

Smooth, Compactly Supported Functions

Smooth Functions

Definitions:

- ► A domain is an open and simply connected set in Rⁿ. We reserve the symbol Ω for domains.
- The set of k times continuously differentiable functions on a domain Ω:

 $C^{k}(\Omega) := \{ \varphi \colon \Omega \to \mathbb{C} \colon \text{all partial derivatives of } \varphi \\ \text{of order } k \text{ exist and are continuous} \}.$

• The set of smooth functions on Ω :

 $\mathcal{C}^{\infty}(\Omega) := \big\{ \varphi \colon \Omega \to \mathbb{C} \colon \text{all partial derivatives of } \varphi \\ \text{ of any order exist} \big\}.$

Compactly Supported Functions

• The support of a function $\varphi \colon \Omega \to \mathbb{C}$:

$$\operatorname{supp} \varphi := \overline{\{x \in \Omega \colon \varphi(x) \neq 0\}}.$$

 $(\overline{A} \text{ denotes the closure of a set } A \subset \mathbb{R}^n.)$

► The set of smooth functions with compact support:

 $C_0^\infty(\mathbb{R}^n) := \big\{ \varphi \in C^\infty(\mathbb{R}^n) \colon \operatorname{supp} \varphi \text{ is a bounded set} \big\}$

$$\mathcal{C}^\infty_0(arOmega) := ig\{ arphi \in \mathcal{C}^\infty_0(\mathbb{R}^n) \colon \operatorname{supp} arphi \subset arOmega ig\}$$

Problem: Do there even exist functions in $C_0^{\infty}(\mathbb{R}^n)$?

The Bump Function

Define the bump function

$$b\colon \mathbb{R} \to \mathbb{R}, \qquad b(x) = egin{cases} e^{-rac{1}{1-x^2}} & -1 \leq x \leq 1, \ 0 & |x| > 1. \end{cases}$$

(For \mathbb{R}^n , consider simply b(|x|).)

The Smooth Step

The integral of the bump function,

$$B(x) := \int_{-\infty}^{x} b(y) \, dy,$$

creates a "smooth step":

Cut-Off Functions

Shift and scale B to create a cut-off function χ_{ε} with the properties

(i)
$$\chi_{\varepsilon} \in C_0^{\infty}(\mathbb{R})$$
,
(ii) $\chi_{\varepsilon}(x) = 1$ if $|x| < 1/\varepsilon$,
(iii) $\chi_{\varepsilon}(x) = 0$ if $|x| > 1/\varepsilon + \delta$

(here $\delta > 0$ may depend on ε)

Constructing Smooth, Compactly Supported Functions If $f \in C^{\infty}(\mathbb{R})$, the function f_{ε} defined by

 $f_{\varepsilon}(x) := \chi_{\varepsilon}(x) \cdot f(x)$

satisfies

$$f_arepsilon(x) = egin{cases} f(x) & ext{for } |x| < 1/arepsilon, \ 0 & ext{for } |x| > 1/arepsilon + arepsilon. \end{cases}$$

Furthermore, $f_{\varepsilon} \in C^{\infty}(\mathbb{R})$ since both χ_{ε} and f are smooth functions. Hence,

$$f_{\varepsilon}\in C_0^{\infty}(\mathbb{R}).$$

Conclusion: There are many functions in $C_0^{\infty}(\mathbb{R})!$

Multi-Index Notation for Smooth Functions

A multi-index $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n$ is an *n*-tuple of natural numbers. We define

• Degree of α :

$$|\alpha| = \alpha_1 + \dots + \alpha_n$$

Derivatives:

$$D^{\alpha}u := \frac{\partial^{\alpha}u}{\partial x^{\alpha}} := \frac{\partial^{|\alpha|}u}{\partial x_1^{\alpha_1}\partial x_2^{\alpha_2}\cdots \partial x_n^{\alpha_n}}$$

Monomials:

$$x^{\alpha} := x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n}$$

Factorials:

$$\alpha! := \alpha_1! \alpha_2! \cdots \alpha_n!$$