Michick
交大密西柤学院

The Boundary Element Method

The Boundary Element Method（BEM）

Step 1：Approximate Ω by a polygon
－Choose $x^{(k)} \in \partial \Omega, k=1, \ldots, N$ ，and join by straight line segments（Boundary elements）．
The line element joining $x^{(k)}$ to $x^{(k+1)}$ is denoted $\mathcal{C}^{(k)}$
$\left(x^{(N+1)}:=x^{(1)}\right)$ ．
Step 2：Approximate boundary data
－Find midpoint $\bar{x}^{(k)}$ of $\mathcal{C}^{(k)}$
－Take

$$
\begin{array}{rlr}
\left.u\right|_{\mathcal{C}^{(k)}} \approx \bar{u}^{(k)}=u\left(x^{(k)}\right) & \text { on } S_{1} \\
\left.\frac{\partial u}{\partial n}\right|_{\mathcal{C}^{(k)}} \approx \bar{p}^{(k)}=\left.\frac{\partial u}{\partial n}\right|_{x^{(k)}} & \text { on } S_{2}
\end{array}
$$

M M)

The Boundary Element Method (BEM)
Then

$$
\lambda_{\Omega}(\xi) u(\xi) \approx \sum_{k=1}^{N} \bar{u}^{(k)} \cdot I_{2}^{(k)}(\xi)-\bar{p}^{(k)} I_{1}^{(k)}(\xi) .
$$

with

$$
I_{1}^{(k)}(\xi):=\int_{\mathcal{C}^{(k)}} E(\cdot ; \xi) d s, \quad I_{2}^{(k)}(\xi):=\int_{\mathcal{C}^{(k)}} \frac{\partial E(\cdot ; \xi)}{\partial n} d s
$$

Easily calculated!

The Boundary Element Method（BEM）
Choose $\xi=\bar{x}^{(k)}$ ：

$$
\frac{1}{2} \underbrace{u\left(\bar{x}^{(k)}\right)}_{=\bar{u}^{(k)}}=\sum_{k=1}^{N} \bar{u}^{(k)} \cdot I_{2}^{(k)}\left(\bar{x}^{(k)}\right)-\bar{p}^{(k)} I_{1}^{(k)}\left(\bar{x}^{(k)}\right)
$$

－Linear system of N algebraic equations
－ $2 N$ unknowns $\bar{u}^{(k)}$ and $\bar{p}^{(k)}, k=1, \ldots, N$
－N unknowns given by boundary data
\Rightarrow Find all coefficients $\bar{u}^{(k)}$ and $\bar{p}^{(k)}$ ．

Then

$$
u(\xi) \approx \sum_{k=1}^{N} \bar{u}^{(k)} \cdot I_{2}^{(k)}(\xi)-\bar{p}^{(k)} I_{1}^{(k)}(\xi)
$$

for $\xi \in \Omega$.

Green Functions and the BEM

Suppose $\partial \Omega=L \cup \mathcal{C}, \mathcal{C}=S_{1} \cup S_{2}$ ．

Require

$$
\left.u\right|_{L}=0
$$

and

$$
\left.u\right|_{S_{1}}=f,\left.\quad \frac{d u}{d n}\right|_{S_{2}}=g
$$

Use Green＇s function for upper half－plane，

$$
g(x ; \xi)=E(x, \xi)-E\left(x ; \xi^{*}\right)
$$

with $\xi^{*}=\left(\xi_{1},-\xi_{2}\right)$

Green Functions and the BEM

We find

$$
\lambda_{\Omega^{\prime}}(\xi) u(\xi)=\int_{\mathcal{C}}\left(u \cdot \frac{\partial g(\cdot ; \xi)}{\partial n}-g(\cdot ; \xi) \cdot \frac{\partial u}{\partial n}\right) d s
$$

where

$$
\lambda_{\Omega^{\prime}}(\xi)= \begin{cases}0 & \xi \in L \cup \bar{\Omega}^{c} \\ 1 & \xi \in \Omega \\ 1 / 2 & \xi \in \mathcal{C}\end{cases}
$$

Note：We do not need to integrate over L ，as

$$
\left.u\right|_{L}=\left.g\right|_{L}=0
$$

Green Functions and the BEM

Discretize $\mathcal{C}: x^{(1)}, x^{(N+1)}$ are the endpoints of \mathcal{C} ．
Then

$$
\lambda_{\Omega}(\xi) u(\xi) \approx \sum_{k=1}^{N} \bar{u}^{(k)} \cdot \int_{\mathcal{C}^{(k)}} \frac{\partial g}{\partial n}(\cdot ; \xi) d s-\bar{p}^{(k)} \int_{\mathcal{C}^{(k)}} g(\cdot ; \xi) d s .
$$

where

$$
\begin{aligned}
\int_{\mathcal{C}^{(k)}} g(\cdot ; \xi) d s & =l_{1}^{(k)}(\xi)-I_{1}^{(k)}\left(\xi^{*}\right) \\
\int_{\mathcal{C}^{(k)}} \frac{\partial g}{\partial n}(\cdot ; \xi) d s & =I_{2}^{(k)}(\xi)-I_{2}^{(k)}\left(\xi^{*}\right)
\end{aligned}
$$

As before，find the N unknown parameters of $\bar{u}^{(k)}$ and $\bar{p}^{(k)}$ ．

Green Functions and the BEM

Advantage of Green functions in BEM：
－Smaller part of $\partial \Omega$ to discretize，fewer equations／unknowns．

Disdvantage of Green functions in BEM：
－The integrals

$$
\int_{\mathcal{C}^{(k)}} g(\cdot ; \xi) d s \quad \text { and } \quad \int_{\mathcal{C}^{(k)}} \frac{\partial g}{\partial n}(\cdot ; \xi) d s
$$

may be harder to evaluate

