交大密西柤学院

The Elliptic Boundary Value Problem

The Formal Adjoint
Definition．Let L be a partial differential operator on \mathbb{R}^{n} ．The operator L^{*} such that

$$
(L T)(\varphi)=T\left(L^{*} \varphi\right)
$$

for any $T \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right), \varphi \in \mathcal{D}\left(\mathbb{R}^{n}\right)$ is called the formal adjoint of L ．
If $L=L^{*}$ ，we say that L is formally self－adjoint．

Example．

$$
L=-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(p(x) \frac{\partial}{\partial x_{i}}\right)+q(x)
$$

is formally self－adjoint．

JOINT INSTITUTE
交大密西柤学院

Lagrange＇s Identity

For $u, v \in C^{2}\left(\mathbb{R}^{n}\right)$ ，

$$
\begin{aligned}
v L u & =-v \operatorname{div}(p \operatorname{grad} u) \\
& =-\operatorname{div}(p v \operatorname{grad} u)+p\langle\operatorname{grad} v, \operatorname{grad} u\rangle, \\
u L v & =-\operatorname{div}(p u \operatorname{grad} v)+p\langle\operatorname{grad} u, \operatorname{grad} v\rangle
\end{aligned}
$$

so that

$$
v L u-u L v=\operatorname{div}(p u \operatorname{grad} v)-\operatorname{div}(p v \operatorname{grad} u)
$$

（Lagrange＇s Identity）

Green＇s Formula and the Conjunct

Using the divergence theorem，

$$
\begin{aligned}
\int_{\Omega}(v L u-u L v) d x & =\int_{\Omega} \operatorname{div}(p u \operatorname{grad} v-p v \operatorname{grad} u) d x \\
& =\int_{\partial \Omega} p(u \operatorname{grad} v-v \operatorname{grad} u) d \vec{\sigma} \\
& =\int_{\partial \Omega} p\left(u \frac{\partial v}{\partial n}-v \frac{\partial u}{\partial n}\right) d \sigma
\end{aligned}
$$

（Green＇s Formula）

The conjunct of L is

$$
J(u, v)=p(v \operatorname{grad} u-u \operatorname{grad} v)
$$

Adjoint Boundary Value Problems

Definition．Let (L, B) be a boundary value problem．Set

$$
\begin{aligned}
M & :=\left\{u \in C^{2}(\Omega) \cap C(\bar{\Omega}): B u=0\right\}, \\
M^{*} & :=\left\{v \in C^{2}(\Omega) \cap C(\bar{\Omega}): \int_{\partial \Omega} J(u, v) d \vec{\sigma}=0 \quad \text { for all } u \in M .\right\}
\end{aligned}
$$

A boundary operator B^{*} such that

$$
M^{*}=\left\{v \in C^{2}(\Omega): B^{*} v=0\right\}
$$

is said to be the adjoint operator to B ．
$\left(L^{*}, B^{*}\right)$ is the adjoint boundary value problem to (L, B) ．
If $L=L^{*}$ and $M=M^{*},(L, B)$ is said to be self－adjoint．

Self－Adjointness

Example．We show that $M=M^{*}$ for

$$
L=-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(p(x) \frac{\partial}{\partial x_{i}}\right)+q(x)
$$

Suppose that $u, v \in M$ ．Then

$$
\alpha(x) u+\left.\beta(x) \frac{\partial u}{\partial n}\right|_{\partial \Omega}=0, \quad \alpha(x) v+\left.\beta(x) \frac{\partial v}{\partial n}\right|_{\partial \Omega}=0 .
$$

Fix $x \in \partial \Omega$ and regard $\alpha(x), \beta(x)$ as solutions of the system

$$
\left(\begin{array}{ll}
u & \frac{\partial u}{\partial n} \\
v & \frac{\partial v}{\partial n}
\end{array}\right)\binom{\alpha}{\beta}=\binom{0}{0} .
$$

Self－Adjointness

This implies

$$
0=\operatorname{det}\left(\begin{array}{cc}
u & \frac{\partial u}{\partial n} \\
v & \frac{\partial v}{\partial n}
\end{array}\right)=u \frac{\partial v}{\partial n}-v \frac{\partial u}{\partial n}
$$

on $\partial \Omega$ ．
Hence，if $u, v \in M$ ，then

$$
\int_{\partial \Omega} J(u, v) d \vec{\sigma}=\int_{\partial \Omega} p\left(v \frac{\partial u}{\partial n}-u \frac{\partial v}{\partial n}\right) d \sigma=0 .
$$

This shows

$$
v \in M \Rightarrow v \in M^{*}
$$

The converse can be shown by considering S_{1}, S_{2} and S_{3} separately．

Direct and Adjoint Green Functions
Definition．The（direct）Green function $g(x, \xi)$ for (L, B) satisfies

$$
L g=\delta(x-\xi), \quad B g=0
$$

while the adjoint Green function g^{*} satisfies

$$
L^{*} g^{*}=\delta(x-\xi), \quad B^{*} g^{*}=0
$$

Solution Formula for the Elliptic Problem

Suppose u solves (L, B) with data $(\varrho F, \gamma)$ and $g^{*}=g$ is the Green function for $\left(L^{*}, B^{*}\right)=(L, B)$ ．

Then Green＇s formula gives

$$
\begin{aligned}
u(\xi)= & \int_{\Omega} g(x, \xi) \varrho(x) F(x) d x-\int_{\partial \Omega} p\left(u \frac{\partial g}{\partial n}-g \frac{\partial u}{\partial n}\right) d \sigma \\
= & \int_{\Omega} g(x, \xi) \varrho(x) F(x) d x \\
& -\int_{S_{1}} \frac{p}{\alpha} \gamma \frac{\partial g(\cdot, \xi)}{\partial n} d \sigma+\int_{S_{2} \cup S_{3}} \frac{p}{\beta} \gamma g(\cdot, \xi) d \sigma
\end{aligned}
$$

