

Solvability Conditions

Existence and Uniqueness

If the boundary value problem

$$(L, B_1, \ldots, B_p)$$

with data

has only the trivial solution,

- Green's function can be constructed and
- there exists a solution formula for any data $\{f; \gamma_1, \ldots, \gamma_p\}$.

(Existence and uniqueness of the solution for the general problem)

The Fredholm Alternative

Fredholm Alternative.

- Either the completely homogeneous problem has a non-trivial solution,
- ► Or the solution to the problem with data {f; 0, ..., 0} exists and is unique.

Relationship to the Adjoint Problem

The completely homogeneous direct problem is

$$Lu = 0, \qquad x \in (a, b), \qquad B_1 u = \cdots = B_p u = 0.$$
 (*)

There is a relationship to the adjoint problem

$$L^*v = 0, \qquad x \in (a, b), \qquad B_1^*v = \cdots = B_p^*v = 0 \qquad (**)$$

as follows:

- If (*) has only the trivial solution, then (**) also has only the trivial solution.
- If there are k independent, non-trivial solutions u⁽¹⁾,..., u^(k) of (*), then (**) also has k independent, non-trivial solutions v⁽¹⁾,..., v^(k).

Solvability via the Adjoint Problem

Consider now the problem

$$Lu = f$$
, $x \in (a, b)$, $B_1u = \cdots = B_pu = 0$.

Suppose there exists a solution u and let v be any non-trivial solution of the completely homogeneous adjoint problem $(L^*, B_1^*, \ldots, B_p^*)$. Then

$$\int_{a}^{b} f(x)v(x) dx = \int_{a}^{b} (v(x)Lu(x) - u(x)L^{*}v(x)) dx$$
$$= J(u,v)\Big|_{a}^{b}$$
$$= 0$$

Solvability via the Adjoint Problem

Hence, if $v^{(1)}, \ldots, v^{(k)}$ are k independent, non-trivial solutions of the completely homogeneously adjoint problem $(L^*, B_1^*, \ldots, B_p^*)$, a necessary condition for the solvability of

$$(L, B_1, \ldots, B_p)$$
 with data $(f; 0, \ldots, 0)$

is

$$\int_{a}^{b} f(x) v^{(1)}(x) \, dx = \cdots = \int_{a}^{b} f(x) v^{(k)}(x) \, dx = 0.$$

It can be shown that this condition is also sufficient, i.e., a solution exists if and only if f satisfies these k equations.

$$-u'' + u' = f,$$
 $0 < x < 1,$
 $u(1) - u(0) = 0,$
 $u'(1) - u'(0) = 0.$

The fully homogeneous adjoint problem is

$$-v'' - v' = 0,$$
 $0 < x < 1,$
 $v(1) - v(0) = 0,$
 $v'(1) - v'(0) = 0.$

which has non-trivial solution $v(x) = c, c \in \mathbb{R}$. Hence, a solution will exist if and only if

$$\int_0^1 f(x)\,dx=0.$$

u' + u = f, 0 < x < 1, $u(0) - e \cdot u(1) = 0$.

The adjoint homogeneous problem is

$$-v' + v = 0,$$
 $0 < x < 1,$ $-e \cdot v(0) + v(1) = 0.$

which has non-trivial solution

$$v(x) = c \cdot e^x, \qquad c \in \mathbb{R}.$$

The (necessary and sufficient) solvability condition is

$$\int_0^1 f(x)e^x\,dx=0.$$

Solvability of the General Inhomogeneous Problem Consider now the problem

$$Lu = f$$
, $x \in (a, b)$, $B_1u = \gamma_1$, ..., $B_pu = \gamma_p$.

Suppose *u* is a solution and *v* any non-trivial solution of the completely homogeneous adjoint problem $(L^*, B_1^*, \ldots, B_p^*)$. Then

$$\int_{a}^{b} f(x)v(x) dx = \int_{a}^{b} (v(x)Lu(x) - u(x)L^{*}v(x)) dx$$
$$= J(u,v)\Big|_{a}^{b}$$
$$= \gamma_{1}B_{2p}^{*}v + \dots + \gamma_{p}B_{p+1}^{*}v$$

where $B_{p+1}^*, \ldots, B_{2p}^*$ are the additional adjoint boundary functionals introduced previously.

Solvability of the General Inhomogeneous Problem If $v^{(1)}, \ldots, v^{(k)}$ are k non-trivial solution of the completely homogeneous adjoint problem $(L^*, B_1^*, \ldots, B_p^*)$, the solvability conditions are

$$\int_{a}^{b} f(x)v^{(1)}(x) dx = \gamma_{1}B_{2p}^{*}v^{(1)} + \dots + \gamma_{p}B_{p+1}^{*}v^{(1)},$$

$$\int_{a}^{b} f(x)v^{(2)}(x) dx = \gamma_{1}B_{2p}^{*}v^{(2)} + \dots + \gamma_{p}B_{p+1}^{*}v^{(2)},$$

$$\vdots$$

$$\int_{a}^{b} f(x)v^{(k)}(x) dx = \gamma_{1}B_{2p}^{*}v^{(k)} + \dots + \gamma_{p}B_{p+1}^{*}v^{(k)}.$$

$$u' + u = f$$
, $0 < x < 1$, $u(0) - e \cdot u(1) = \gamma_1$.

We have $L^*v = -v' + v$ and

$$J(u,v)\Big|_{0}^{1} = u(1)v(1) - u(0)v(0)$$

= $\underbrace{(u(0) - e \cdot u(1))}_{=B_{1}u} \underbrace{-v(0)}_{=B_{2}^{*}v} + \underbrace{u(1)}_{=B_{2}u} \underbrace{(v(1) - ev(0))}_{=B_{1}^{*}v}$

We have already seen that

$$v(x) = c \cdot e^x$$

solves the fully homogeneous adjoint problem (L^*, B_1^*) .

Then

$$J(u,v)\big|_0^1 = \gamma_1 B_2^* v = -\gamma_1 \cdot c.$$

A solution to (L, B_1) with data (f, γ_1) exists if and only if

$$\int_0^1 c \cdot e^x f(x) \, dx = -c\gamma_1$$

or

$$\int_0^1 e^x f(x)\,dx = -\gamma_1.$$