Michichex
交大密西相学院

Boundary Value Problems of General Order

Boundary Value Problems of Order p

Consider the problem $\left(L, B_{1}, \ldots, B_{p}\right)$ on $[a, b] \subset \mathbb{R}$ ，where

$$
L=a_{p} \frac{d^{p}}{d x^{p}}+a_{p-1} \frac{d^{p-1}}{d x^{p-1}}+\cdots+a_{1} \frac{d}{d x}+a_{0}
$$

with $a_{0}, \ldots, a_{p} \in C([a, b])$ and $a_{p}(x) \neq 0$ for all $x \in[a, b]$ ．
We have boundary functionals

$$
\begin{aligned}
B_{1} u & :=\sum_{k=1}^{p} \alpha_{1 k} u^{(k-1)}(a)+\sum_{k=1}^{p} \beta_{1 k} u^{(k-1)}(b), \\
& \vdots \\
B_{p} u & :=\sum_{k=1}^{p} \alpha_{p k} u^{(k-1)}(a)+\sum_{k=1}^{p} \beta_{p k} u^{(k-1)}(b) .
\end{aligned}
$$

Boundary Value Problems of Order p

Assumptions：
（i）The row vectors

$$
\left(\alpha_{i 1}, \ldots, \alpha_{i p}, \beta_{i 1}, \ldots, \beta_{i p}\right)
$$

are independent．
（ii）The completely homogeneous problem has only the trivial solution．
We seek to solve the problem $\left(L, B_{1}, \ldots, B_{p}\right)$ for data

$$
\left\{f ; \gamma_{1}, \ldots, \gamma_{p}\right\}
$$

Boundary Value Problems of Order p

We define

$$
\begin{aligned}
M & :=\left\{u \in C^{p}(a, b): B_{1} u=\cdots=B_{p} u=0\right\}, \\
M^{*} & :=\left\{v \in C^{p}(a, b):\left.J(u, v)\right|_{a} ^{b}=0 \text { for all } u \in M\right\} .
\end{aligned}
$$

The boundary value problem $\left(L, B_{1}, \ldots, B_{p}\right)$ is said to be self－adjoint if

$$
L=L^{*} \quad \text { and } \quad M=M^{*} .
$$

Goal：characterize M^{*} through adjoint boundary functionals

$$
B_{1}^{*}, \ldots, B_{p}^{*}
$$

The Conjunct

Recall that

$$
J(u, v)=\sum_{k=1}^{p} \sum_{i+j=k-1}(-1)^{i} D^{i}\left(a_{m} v\right) D^{j} u .
$$

We express $\left.J(u, v)\right|_{a} ^{b}$ in the form

$$
\left.J(u, v)\right|_{a} ^{b}=\sum_{k=1}^{p}\left(A_{2 p+1-k} v\right) u^{(k-1)}(a)+\sum_{k=1}^{p}\left(A_{p+1-k} v\right) u^{(k-1)}(b)
$$

with boundary functionals $A_{k}, k=1, \ldots, 2 p$ ．
The right－hand side is a linear combination of the $2 p$ terms

$$
u(a), \ldots, u^{(p-1)}(a), \quad u(b), \ldots, u^{(p-1)}(b) .
$$

Additional Boundary Functionals

We now define p additional boundary functionals as follows：

$$
\begin{aligned}
B_{p+1} u & :=\sum_{k=1}^{p} \alpha_{(p+1) k} u^{(k-1)}(a)+\sum_{k=1}^{p} \beta_{(p+1) k} u^{(k-1)}(b) \\
& \vdots \\
B_{2 p} u & :=\sum_{k=1}^{p} \alpha_{(2 p) k} u^{(k-1)}(a)+\sum_{k=1}^{p} \beta_{(2 p) k} u^{(k-1)}(b)
\end{aligned}
$$

such that all $2 p$ row vectors

$$
\left(\alpha_{i 1}, \ldots, \alpha_{i p}, \beta_{i 1}, \ldots, \beta_{i p}\right), \quad i=1, \ldots, 2 p
$$

are independent．

Adjoint Boundary Functionals

We can then write

$$
\begin{aligned}
\left.J(u, v)\right|_{a} ^{b}= & \sum_{k=1}^{2 p}\left(B_{2 p+1-k}^{*} v\right) \cdot B_{k} u \\
= & \left(B_{2 p}^{*} v\right) B_{1} u+\cdots+\left(B_{p+1}^{*} v\right) B_{p} u \\
& +\left(B_{p}^{*} v\right) B_{p+1} u+\cdots+\left(B_{1}^{*} v\right) B_{2 p} u
\end{aligned}
$$

with certain boundary functionals $B_{2 p+1-k}^{*}, k=1, \ldots, 2 p$ ．
If $u \in M,\left.J(u, v)\right|_{a} ^{b}$ vanishes if v satisfies

$$
B_{1}^{*} v=\cdots=B_{p}^{*} v=0
$$

so these are just the adjoint boundary functionals．

Example

$$
L=\frac{d^{2}}{d x^{2}}+x^{2} \frac{d}{d x}+1 \quad \text { on }(0,1) \subset \mathbb{R}
$$

with

$$
B_{1} u=u(0)+u(1), \quad B_{2} u=u^{\prime}(1) .
$$

The boundary functionals correspond to row vectors

$$
(1,0,1,0) \quad \text { and } \quad(0,0,0,1) \text {. }
$$

We add two functionals，$B_{3} u=u(1)$ and $B_{4} u=u^{\prime}(0)$ ，which correspond to row vectors

$$
(0,0,1,0) \quad \text { and } \quad(0,1,0,0) \text {. }
$$

JOINT INSTITUTE
交大密西根学院

Example

The conjunct is

$$
J(u, v)=\left(u^{\prime} v-u v^{\prime}\right)+2 x u v .
$$

and

$$
\left.J(u, v)\right|_{0} ^{1}=v^{\prime}(0) u(0)-v(0) u^{\prime}(0)+\left(2 v(1)-v^{\prime}(1)\right) u(1)+v(1) u^{\prime}(1)
$$

Since $u(0)=B_{1} u-B_{3} u$ ，we have

$$
\begin{aligned}
\left.J(u, v)\right|_{0} ^{1}= & \underbrace{v^{\prime}(0)}_{=: B_{4}^{*} v} B_{1} u+\underbrace{v(1)}_{=: B_{3}^{*} v} \cdot B_{2} u+\underbrace{\left(2 v(1)-v^{\prime}(1)-v^{\prime}(0)\right)}_{=: B_{2}^{*} v} B_{3} u \\
& +\underbrace{v(0)}_{=: B_{1}^{*} v} B_{4} u
\end{aligned}
$$

Example

We hence obtain the adjoint boundary functionals

$$
B_{1}^{*} v=v(0), \quad B_{2}^{*} v=v^{\prime}(0)+2 v(1)-v^{\prime}(1)
$$

Solution Formula

As in the previous section，we define the direct and adjoint Green functions to satisfy

$$
\begin{array}{rlrl}
L g(x, \xi) & =\delta(x-\xi), & B_{1} g=\cdots=B_{p} g=0 \\
L^{*} g^{*}(x, \xi)=\delta(x-\xi), & B_{1}^{*} g^{*}=\cdots=B_{p}^{*} g^{*}=0
\end{array}
$$

and we can again show that

$$
g^{*}(x, \xi)=g(\xi, x)
$$

Then the solution of $\left(L, B_{1}, \ldots, B_{p}\right)$ with data $\left\{f ; \gamma_{1}, \ldots, \gamma_{p}\right\}$ is

$$
u(x)=\int_{a}^{b} g(x, \xi) f(\xi) d \xi-\left.J(u, g(x, \cdot))\right|_{a} ^{b}
$$

