Point Sources and Green Functions

A Point Source

Fundamental equation for the temperature（ $\alpha^{2}=1$ ）：

$$
\int_{0}^{1} \frac{\partial \theta}{\partial t} d x=\int_{0}^{1} \frac{\partial^{2} \theta}{\partial x^{2}} d x+Q(t)
$$

Assumption：Point heat source located at $0<\xi<1$ such that

$$
Q(t)=1
$$

There exists no density q such that

$$
Q(t)=\int_{0}^{1} q(x, t) d x
$$

M

Equilibrium equation, $\theta(x, t)=u(x)$:

$$
-\frac{d^{2} u}{d x^{2}}=0,
$$

$$
0<x<1, x \neq \xi
$$

(Differential Equation is not defined for $x=\xi!$)
Denote by $g(x, \xi)$ the solution with

$$
g(0, \xi)=g(1, \xi)=0 \quad \text { and } \quad Q(t)=1 .
$$

(Green's Function)

The Heat Balance Equation

The differential equation implies

$$
g(x, \xi)=\left\{\begin{array}{ll}
A x & 0<x<\xi \tag{I.1}\\
B(1-x) & \xi<x<1
\end{array} \quad A, B \in \mathbb{R}\right.
$$

Problem：g classical $\Rightarrow A=B=0$
The equation does not take the point source into account．
Consider instead the heat balance equation

$$
\int_{a}^{b} \frac{\partial^{2} u}{\partial x^{2}} d x+Q(t)=0
$$

which holds for any $a, b \in[0,1]$ ．

The Jump Condition

In particular，for $\varepsilon>0$ ，

$$
\int_{\xi-\varepsilon}^{\xi+\varepsilon} \frac{\partial^{2} g}{\partial x^{2}} d x=-Q=-1
$$

SO

$$
\left.g^{\prime}(x, \xi)\right|_{x=\xi+\varepsilon}-\left.g^{\prime}(x, \xi)\right|_{x=\xi-\varepsilon}=-1 .
$$

or

$$
\lim _{x \nearrow \xi} g^{\prime}(x, \xi)-\lim _{x \searrow \xi} g^{\prime}(x, \xi)=-1
$$

（Jump Condition）

The Solution for a Point Source

$$
g(x, \xi)= \begin{cases}(1-\xi) x & 0 \leq x<\xi, \\ (1-x) \xi & \xi \leq x \leq 1 .\end{cases}
$$

Several Point Sources

Generalization：Two point sources
－located at ξ_{1} and ξ_{2}
－generating heat q_{1} and q_{2}
The problem is linear，so the solution（temperature distribution）is

$$
u(x)=q_{1} \cdot g\left(x, \xi_{1}\right)+q_{2} \cdot g\left(x, \xi_{2}\right)
$$

Check：
（i）u satisfies the boundary conditions $u(0)=u(1)=0$ ．
（ii）u satisfies $u^{\prime \prime}(x)=0$ for any $x \neq \xi_{1}, \xi_{2}$ ．
（iii）u satisfies the heat balance on any subinterval of $[0,1]$ ．

