The Adjoint Second-Order Boundary Value Problem

The Formal Adjoint and Green＇s Formula

The formal adjoint of

$$
L=a_{2} \frac{d^{2}}{d x^{2}}+a_{1} \frac{d}{d x}+a_{0}
$$

is

$$
L^{*}=a_{2} \frac{d^{2}}{d x^{2}}+\left(2 a_{2}^{\prime}-a_{1}\right) \frac{d}{d x}+\left(a_{2}^{\prime \prime}-a_{1}^{\prime}+a_{0}\right)
$$

Green＇s identity is

$$
\int_{a}^{b}\left(v L u-u L^{*} v\right)=\left.J(u, v)\right|_{a} ^{b}
$$

with the conjunct

$$
J(u, v)=a_{2}\left(v u^{\prime}-u v^{\prime}\right)+\left(a_{1}-a_{2}^{\prime}\right) u v .
$$

Adjoint Boundary Value Problems

We want to solve the problem $\left(L, B_{1}, B_{2}\right)$ on $(a, b) \subset \mathbb{R}$ with

$$
\begin{aligned}
& B_{1} u=\alpha_{11} u(a)+\alpha_{12} u^{\prime}(a)+\beta_{11} u(b)+\beta_{12} u^{\prime}(b), \\
& B_{2} u=\alpha_{21} u(a)+\alpha_{22} u^{\prime}(a)+\beta_{21} u(b)+\beta_{22} u^{\prime}(b),
\end{aligned}
$$

where $\alpha_{i j}, \beta_{i j} \in \mathbb{R}, i, j=1,2$ ．
Suppose that u satisfies

$$
B_{1} u=B_{2} u=0 .
$$

Question：For which functions v is $\left.J(u, v)\right|_{a} ^{b}=0$ ？

Adjoint Boundary Functionals

Definition．

$$
\begin{aligned}
M & :=\left\{u \in C^{2}(a, b): B_{1} u=B_{2} u=0\right\} \\
M^{*} & :=\left\{v \in C^{2}(a, b):\left.J(u, v)\right|_{a} ^{b}=0 \text { for all } u \in M\right\}
\end{aligned}
$$

There exist so－called adjoint boundary functionals B_{1}^{*} and B_{2}^{*} such that

$$
M^{*}=\left\{v \in C^{2}(a, b): B_{1}^{*} v=B_{2}^{*} v=0\right\}
$$

The adjoint boundary functionals have the form

$$
\begin{aligned}
& B_{1}^{*} u=\alpha_{11}^{*} u(a)+\alpha_{12}^{*} u^{\prime}(a)+\beta_{11}^{*} u(b)+\beta_{12}^{*} u^{\prime}(b) \\
& B_{2}^{*} u=\alpha_{21}^{*} u(a)+\alpha_{22}^{*} u^{\prime}(a)+\beta_{21}^{*} u(b)+\beta_{22}^{*} u^{\prime}(b),
\end{aligned}
$$

where $\alpha_{i j}^{*}, \beta_{i j}^{*} \in \mathbb{R}, i, j=1,2$ ．

Adjoint Boundary Functionals

The existence of B_{1}^{*} and B_{2}^{*} follows from

$$
\left.J(u, v)\right|_{a} ^{b}=\left.a_{2}\left(v u^{\prime}-u v^{\prime}\right)\right|_{a} ^{b}+\left.\left(a_{1}-a_{2}^{\prime}\right) u v\right|_{a} ^{b}
$$

and then＂factoring out＂$B_{1} u$ and $B_{2} u$ in the equation

$$
\left.J(u, v)\right|_{a} ^{b}=0
$$

While M^{*} is completely determined by M, B_{1}^{*}, B_{2}^{*} are not unique．
For example，we can replace B_{1}^{*}, B_{2}^{*} by

$$
\widetilde{B}_{1}^{*}=B_{1}^{*}+B_{2}^{*}, \quad \widetilde{B}_{2}^{*}=B_{1}^{*}-B_{2}^{*}
$$

without affecting M^{*} ．

Example of Adjoint Boundary Value Functionals

$$
L=\frac{d^{2}}{d x^{2}} \quad \text { on }(0,1) \subset \mathbb{R}
$$

with

$$
B_{1} u=u^{\prime}(0)-u(1), \quad B_{2} u=u^{\prime}(1)
$$

The conjunct is

$$
\begin{aligned}
\left.J(u, v)\right|_{0} ^{1} & =v u^{\prime}-\left.u v^{\prime}\right|_{0} ^{1} \\
& =v(1) u^{\prime}(1)-u(1) v^{\prime}(1)-v(0) u^{\prime}(0)+u(0) v^{\prime}(0)
\end{aligned}
$$

Now if $u \in M=\left\{u \in C^{2}([0,1]): B_{1} u=B_{2} u=0\right\}$ ，then

$$
\left.J(u, v)\right|_{0} ^{1}=-u^{\prime}(0)\left[v^{\prime}(1)+v(0)\right]+u(0) v^{\prime}(0) .
$$

Example of Adjoint Boundary Value Functionals

Hence，

$$
\begin{aligned}
M^{*} & =\left\{v \in C^{2}([0,1]):\left.J(u, v)\right|_{a} ^{b}=0 \text { for all } u \in M\right\} \\
& =\left\{v \in C^{2}([0,1]): v^{\prime}(1)+v(0)=0 \text { and } v^{\prime}(0)=0\right\}
\end{aligned}
$$

A possible choice of adjoint boundary functionals is

$$
B_{1}^{*} v=v^{\prime}(1)+v(0), \quad B_{2}^{*} v=v^{\prime}(0)
$$

Adjoint Boundary Value Problems
Definition．The boundary value problem

$$
\left(L^{*}, B_{1}^{*}, B_{2}^{*}\right)
$$

is said to be the adjoint of

$$
\left(L, B_{1}, B_{2}\right)
$$

（ L, B_{1}, B_{2} ）is called self－adjoint if

$$
L=L^{*} \quad \text { and } \quad M=M^{*} .
$$

