JOINT INSTITUTE
交大密西柤学院

Green＇s Function and a Solution Formula for Second－Order Boundary Value Problems

Mixed Boundary Conditions

In the general case，we have

$$
\begin{aligned}
& B_{1} g:=\alpha_{11} g(a)+\alpha_{12} g^{\prime}(a)+\beta_{11} g(b)+\beta_{12} g^{\prime}(b)=0 \\
& B_{2} g:=\alpha_{21} g(a)+\alpha_{22} g^{\prime}(a)+\beta_{21} g(b)+\beta_{22} g^{\prime}(b)=0
\end{aligned}
$$

It is possible to find a non－trivial function u_{1} satisfying

$$
L u_{1}=0, \quad B_{1} u_{1}=0
$$

by solving $L u_{1}=0$ with the separated boundary conditions

$$
\begin{aligned}
& \alpha_{11} u_{1}(a)+\alpha_{12} u_{1}^{\prime}(a)=1 \\
& \beta_{11} u_{1}(b)+\beta_{12} u_{1}^{\prime}(b)=-1
\end{aligned}
$$

Similarly，there exists a non－trivial u_{2} such that

$$
L u_{2}=0, \quad B_{2} u_{2}=0
$$

Green＇s Function for Mixed Boundary Conditions

We construct Green＇s function from the sum of the causal fundamental solution

$$
E(x, \xi)=H(x-\xi) u_{\xi}(x)
$$

and u_{1} and u_{2} ：

$$
g(x, \xi)=H(x-\xi) u_{\xi}(x)+c_{1} \cdot u_{1}(x)+c_{2} \cdot u_{2}(x)
$$

where $c_{1}, c_{2} \in \mathbb{C}$ may depend on ξ ．
The constants are determined through

$$
\begin{aligned}
& B_{1} g=\beta_{11} u_{\xi}(b)+\beta_{12} u_{\xi}^{\prime}(b)+c_{2} \cdot B_{1} u_{2}=0, \\
& B_{2} g=\beta_{21} u_{\xi}(b)+\beta_{22} u_{\xi}^{\prime}(b)+c_{1} \cdot B_{2} u_{1}=0 .
\end{aligned}
$$

Example for Mixed Boundary Conditions

$$
\begin{array}{rlr}
L u & =u^{\prime \prime} \quad \text { on }(0,1) \subset \mathbb{R}, \\
B_{1} u & =u(0)+u(1) \\
B_{2} u & =u^{\prime}(0)+u^{\prime}(1) &
\end{array}
$$

We first find a causal fundamental solution by solving

$$
u_{\xi}^{\prime \prime}=0, \quad u_{\xi}(\xi)=0, \quad \quad u_{\xi}^{\prime}(\xi)=1
$$

This gives

$$
u_{\xi}(x)=x-\xi
$$

so the casual fundamental solution is

$$
E(x, \xi)=H(x-\xi) \cdot(x-\xi)
$$

Example for Mixed Boundary Conditions

We find a non－trivial function u_{1} such that

$$
u_{1}^{\prime \prime}=0, \quad B_{1} u_{1}=u_{1}(0)+u_{1}(1)=0 .
$$

We take

$$
u_{1}(x)=1-2 x .
$$

Next we choose a function u_{2} such that

$$
u_{2}^{\prime \prime}=0, \quad B_{2} u_{2}=u_{2}^{\prime}(0)+u_{2}^{\prime}(1)=0
$$

and we can take

$$
u_{2}(x)=1
$$

Example for Mixed Boundary Conditions

Then Green＇s function is

$$
g(x, \xi)=H(x-\xi) \cdot(x-\xi)+c_{1}(1-2 x)+c_{2}, \quad 0<\xi<1,
$$

and the parameters $c_{1}, c_{2} \in \mathbb{R}$ are determined through

$$
\begin{aligned}
B_{1} g & =g(0, \xi)+g(1, \xi) \\
& =c_{1}+c_{2}+1-\xi-c_{1}+c_{2} \\
& =0 \\
B_{2} g & =g^{\prime}(0, \xi)+g^{\prime}(1, \xi) \\
& =-2 c_{1}+1-2 c_{1} \\
& =0
\end{aligned}
$$

which gives

$$
c_{1}=\frac{1}{4}, \quad c_{2}=\frac{\xi-1}{2} .
$$

Example for Mixed Boundary Conditions

We finally have

$$
\begin{aligned}
g(x, \xi) & =H(x-\xi) \cdot(x-\xi)-\frac{x-\xi}{2}-\frac{1}{4} \\
& = \begin{cases}\frac{\xi-x}{2}-\frac{1}{4} & x<\xi, \\
\frac{x-\xi}{2}-\frac{1}{4} & x>\xi .\end{cases}
\end{aligned}
$$

Note：The construction worked because the completely homogeneous problem has only the trivial solution，as can be easily checked．

Solution Formula for the General Problem

Theorem．If the completely homogeneous problem $\left(L, B_{1}, B_{2}\right)$ has only the trivial solution，the problem with data $\left\{f ; \gamma_{1}, \gamma_{2}\right\}$ has the unique solution

$$
u(x)=\int_{a}^{b} g(x, \xi) f(\xi) d \xi+\frac{\gamma_{2}}{B_{2} u_{1}} u_{1}(x)+\frac{\gamma_{1}}{B_{1} u_{2}} u_{2}(x) .
$$

Proof．We have seen in the study of initial value problems that the integral satisfies the inhomogeneous differential equation while u_{1} and u_{2} solve the homogeneous equation．Thus，the sum solves $L u=f$ ．

From

$$
B_{1} g=B_{2} g=0, \quad B_{1} u_{1}=0, \quad B_{2} u_{2}=0
$$

we see that u satisfies $B_{u}=\gamma_{1}$ and $B_{2} u=\gamma_{2}$ ．

