

Green's Function and a Solution Formula for Second-Order Boundary Value Problems

Mixed Boundary Conditions

In the general case, we have

$$B_{1}g := \alpha_{11}g(a) + \alpha_{12}g'(a) + \beta_{11}g(b) + \beta_{12}g'(b) = 0,$$

$$B_{2}g := \alpha_{21}g(a) + \alpha_{22}g'(a) + \beta_{21}g(b) + \beta_{22}g'(b) = 0,$$

It is possible to find a non-trivial function u_1 satisfying

$$Lu_1=0, \qquad \qquad B_1u_1=0.$$

by solving $Lu_1 = 0$ with the separated boundary conditions

$$\alpha_{11}u_1(a) + \alpha_{12}u'_1(a) = 1,$$

$$\beta_{11}u_1(b) + \beta_{12}u'_1(b) = -1.$$

Similarly, there exists a non-trivial u_2 such that

$$Lu_2=0, \qquad B_2u_2=0.$$

Green's Function for Mixed Boundary Conditions

We construct Green's function from the sum of the causal fundamental solution

$$E(x,\xi)=H(x-\xi)u_{\xi}(x)$$

and u_1 and u_2 :

$$g(x,\xi) = H(x-\xi)u_{\xi}(x) + c_1 \cdot u_1(x) + c_2 \cdot u_2(x)$$

where $c_1, c_2 \in \mathbb{C}$ may depend on ξ .

The constants are determined through

$$B_1g = \beta_{11}u_{\xi}(b) + \beta_{12}u'_{\xi}(b) + c_2 \cdot B_1u_2 = 0,$$

$$B_2g = \beta_{21}u_{\xi}(b) + \beta_{22}u'_{\xi}(b) + c_1 \cdot B_2u_1 = 0.$$

Example for Mixed Boundary Conditions

$$Lu = u''$$
 on $(0,1) \subset \mathbb{R}$,
 $B_1u = u(0) + u(1)$
 $B_2u = u'(0) + u'(1)$

We first find a causal fundamental solution by solving

$$u_{\xi}''=0, \qquad u_{\xi}(\xi)=0, \qquad u_{\xi}'(\xi)=1.$$

This gives

$$u_{\xi}(x) = x - \xi$$

so the casual fundamental solution is

$$E(x,\xi) = H(x-\xi) \cdot (x-\xi).$$

Example for Mixed Boundary Conditions

We find a non-trivial function u_1 such that

$$u_1'' = 0,$$
 $B_1 u_1 = u_1(0) + u_1(1) = 0.$

We take

$$u_1(x)=1-2x.$$

Next we choose a function u_2 such that

$$u_2''=0,$$
 $B_2u_2=u_2'(0)+u_2'(1)=0.$

and we can take

$$u_2(x)=1.$$

Example for Mixed Boundary Conditions Then Green's function is

$$g(x,\xi) = H(x-\xi) \cdot (x-\xi) + c_1(1-2x) + c_2, \quad 0 < \xi < 1,$$

and the parameters $c_1,c_2\in\mathbb{R}$ are determined through

$$B_1g = g(0,\xi) + g(1,\xi)$$

= $c_1 + c_2 + 1 - \xi - c_1 + c_2$
= 0,
$$B_2g = g'(0,\xi) + g'(1,\xi)$$

= $-2c_1 + 1 - 2c_1$
= 0

which gives

$$c_1 = \frac{1}{4},$$
 $c_2 = \frac{\xi - 1}{2}.$

Example for Mixed Boundary Conditions

We finally have

$$g(x,\xi) = H(x-\xi) \cdot (x-\xi) - \frac{x-\xi}{2} - \frac{1}{4}$$
$$= \begin{cases} \frac{\xi-x}{2} - \frac{1}{4} & x < \xi, \\ \frac{x-\xi}{2} - \frac{1}{4} & x > \xi. \end{cases}$$

Note: The construction worked because the completely homogeneous problem has only the trivial solution, as can be easily checked.

Solution Formula for the General Problem

Theorem. If the completely homogeneous problem (L, B_1, B_2) has only the trivial solution, the problem with data $\{f; \gamma_1, \gamma_2\}$ has the unique solution

$$u(x) = \int_{a}^{b} g(x,\xi)f(\xi) d\xi + \frac{\gamma_2}{B_2 u_1} u_1(x) + \frac{\gamma_1}{B_1 u_2} u_2(x).$$

Proof. We have seen in the study of initial value problems that the integral satisfies the inhomogeneous differential equation while u_1 and u_2 solve the homogeneous equation. Thus, the sum solves Lu = f.

From

$$B_1g = B_2g = 0,$$
 $B_1u_1 = 0,$ $B_2u_2 = 0$

we see that u satisfies $B_u = \gamma_1$ and $B_2 u = \gamma_2$.