JOINT INSTITUTE
交大密西柤学院

Second－Order Boundary Value Problems with Separated Boundary Conditions

Green＇s Function for Unmixed Boundary Conditions

We consider $\left(L, B_{1}, B_{2}\right)$ with

$$
\begin{aligned}
& B_{1} u=\alpha_{11} u(a)+\alpha_{12} u^{\prime}(a) \\
& B_{2} u=\beta_{21} u(b)+\beta_{22} u^{\prime}(b)
\end{aligned}
$$

Major Assumption：We suppose that the fully homogeneous problem has only the trivial solution．

Our goal is to find Green＇s function satisfying

$$
\begin{aligned}
L g & =\delta(x-\xi), \quad x, \xi \in(a, b), \\
B_{1} g & =0 \\
B_{2} g & =0
\end{aligned}
$$

JOINT INSTITUTE交大密西柤学院

Two Basic Functions

Let u_{1} satisfy the initial value problem

$$
L u_{1}=0, \quad u_{1}(a)=\alpha_{12}, \quad u_{1}^{\prime}(a)=-\alpha_{11}
$$

Then u_{1} satisfies

$$
L u_{1}=0, \quad B_{1} u_{1}=0
$$

Similarly，we can find u_{2} such that

$$
L u_{2}=0, \quad B_{2} u_{2}=0
$$

From the Major Assumption，it follows that u_{1} and u_{2} must be independent．

Construction of Green＇s Function

Green＇s function has the form

$$
g(x, \xi)= \begin{cases}c_{1} \cdot u_{1}(x) & x<\xi \\ c_{2} \cdot u_{2}(x) & x>\xi\end{cases}
$$

for some $c_{1}, c_{2} \in \mathbb{R}$ ．
The continuity of g and the jump condition at $x=\xi$ give

$$
\begin{aligned}
c_{1} \cdot u_{1}(\xi)-c_{2} \cdot u_{2}(\xi) & =0, \\
-c_{1} \cdot u_{1}^{\prime}(\xi)+c_{2} \cdot u_{2}^{\prime}(\xi) & =\frac{1}{a_{2}(\xi)} .
\end{aligned}
$$

Construction of Green＇s Function

Since u_{1} and u_{2} are independent，the Wronskian satisfies

$$
W\left(u_{1}, u_{2} ; \xi\right) \neq 0
$$

Hence，by Cramer＇s rule，

$$
c_{1}=\frac{u_{2}(\xi)}{a_{2}(\xi) W\left(u_{1}, u_{2} ; \xi\right)}, \quad c_{2}=\frac{u_{1}(\xi)}{a_{2}(\xi) W\left(u_{1}, u_{2} ; \xi\right)} .
$$

In summary，we see that

$$
g(x, \xi)= \begin{cases}\frac{u_{1}(x) u_{2}(\xi)}{a_{2}(\xi) W\left(u_{1}, u_{2} ; \xi\right)} & x<\xi \\ \frac{u_{1}(\xi) u_{2}(x)}{a_{2}(\xi) W\left(u_{1}, u_{2} ; \xi\right)} & x>\xi\end{cases}
$$

Construction of Green＇s Function

For short，we write

$$
x_{<}:=\min \{x, \xi\}, \quad x_{>}:=\max \{x, \xi\}
$$

SO

$$
g(x, \xi)=\frac{u_{1}\left(x_{<}\right) u_{2}\left(x_{>}\right)}{a_{2}(\xi) W\left(u_{1}, u_{2} ; \xi\right)} .
$$

If $L=L^{*}$ there exists a constant $c \in \mathbb{C}$ such that

$$
g(x, \xi)=c \cdot u_{1}\left(x_{<}\right) u_{2}\left(x_{>}\right)
$$

Non－Homogeneous Boundary Conditions

Given that u_{1} and u_{2} satisfy

$$
L u_{1}=0, \quad L u_{2}=0, \quad B_{1} u_{1}=0, \quad B_{2} u_{2}=0
$$

we also see that

$$
v(x)=\frac{\gamma_{2}}{B_{2} u_{1}} u_{1}(x)+\frac{\gamma_{1}}{B_{1} u_{2}} u_{2}(x)
$$

satisfies

$$
L v=0, \quad B_{1} v=\gamma_{1}, \quad B_{2} v=\gamma_{2}
$$

