

Second-Order Boundary Value Problems

The Second-Order Equation

We consider

$$Lu = a_2(x)u'' + a_1(x)u' + a_0(x)u = f$$
 on $(a, b) \subset \mathbb{R}$

where

- ► f is piecewise continuous on [a, b],
- ▶ $a_0, a_1, a_2 \in C([a, b]),$
- $a_p(x) \neq 0$ for all $x \in [a, b]$.

As usual, a classical solution

- ▶ is continuous on [*a*, *b*],
- ▶ is continuously differentiable on (*a*, *b*),
- ▶ is twice differentiable and satisfies Lu = f at all points in (a, b) where where f is continuous.

Boundary Conditions

We impose the boundary conditions

$$B_1 u := \alpha_{11} u(a) + \alpha_{12} u'(a) + \beta_{11} u(b) + \beta_{12} u'(b) = \gamma_1,$$

$$B_2 u := \alpha_{21} u(a) + \alpha_{22} u'(a) + \beta_{21} u(b) + \beta_{22} u'(b) = \gamma_2,$$

where $\alpha_{ij}, \beta_{ij}, \gamma_j \in \mathbb{R}$, i, j = 1, 2, and the row vectors

$$(\alpha_{11}, \alpha_{12}, \beta_{11}, \beta_{12})$$
 and $(\alpha_{21}, \alpha_{22}, \beta_{21}, \beta_{22})$

are assumed to be independent.

 B_1 and B_2 are called boundary functionals.

We say that $\{f; \gamma_1, \gamma_2\}$ is the data for the boundary value problem (L, B_1, B_2) .

Types of Boundary Conditions

- Homogeneous boundary conditions: $\gamma_1 = \gamma_2 = 0$
- ► Fully homogeneous boundary value problem: data {0;0,0}
- Unmixed or separated boundary conditions:

$$B_{1}u = \alpha_{11}u(a) + \alpha_{12}u'(a) = \gamma_{1}, B_{2}u = \beta_{21}u(b) + \beta_{22}u'(b) = \gamma_{2},$$

Initial conditions:

$$B_1 u = u(a) = \gamma_1,$$

$$B_2 u = u'(a) = \gamma_2.$$

Superposition principle

Suppose

- *u* solves (L, B_1, B_2) with data $\{f; \gamma_1, \gamma_2\}$
- \widetilde{u} solves (L, B_1, B_2) with data $\{\widetilde{f}; \widetilde{\gamma}_1, \widetilde{\gamma}_2\}$

Then

• $c_1u + c_2\widetilde{u}$ solves (L, B_1, B_2) with data

$$\{c_1f + c_2\widetilde{f}; c_1\gamma_1 + c_2\widetilde{\gamma}_1, c_1\gamma_1 + c_2\widetilde{\gamma}_2\}$$

Existence and Uniqueness

- If the problem with data {0; 0, 0} has only the trivial solution u ≡ 0, then the problem {f; γ1, γ2} will have at most one classical solution.
- ► If the problem with data {0; 0, 0} has a non-trivial solution, then the problem {f; \u03c61, \u03c62, 2} will have either no classical solution or an infinite number of classical solutions.

Major Assumption: Unless otherwise stated, we will always suppose that the problem with data $\{0; 0, 0\}$ has only the trivial solution.

Example of Non-Uniqueness / Non-Existence

$$-u'' = f(x), \quad 0 < x < 1, \qquad u'(0) = \gamma_1, \qquad u'(1) = \gamma_2.$$

The problem with data $\{0; 0, 0\}$ has the non-trivial solution u(x) = 1.

There can only be a solution of this problem if

$$\int_0^1 f(x)\,dx = \gamma_1 - \gamma_2.$$

- ▶ For data {1;0,0} there are no classical solutions.
- For data {sin(2πx); 0, 0} there is an infinite number of solutions:

$$u(x)=C-rac{x}{2\pi}+rac{1}{4\pi^2}\sin(2\pi x),\qquad C\in\mathbb{R}.$$

Fundamental Solution

A fundamental solution $E(x,\xi)$ for L with pole at $\xi \in [a,b]$ satisfies

$$LE = \delta(x - \xi),$$
 $x, \xi \in (a, b)$

in the distributional sense.

We can construct a fundamental solution by imposing

•
$$LE = 0$$
 for $a < x < \xi$ and $\xi < x < b$

• *E* continuous on [a, b], including at $x = \xi$

► Jump condition:
$$\lim_{\varepsilon \searrow 0} \left(\frac{dE}{dx} \Big|_{x=\xi+\varepsilon} - \frac{dE}{dx} \Big|_{x=\xi-\varepsilon} \right) = \frac{1}{a_2(\xi)}$$

Green's Function

Green's function $g(x,\xi)$ for (L, B_1, B_2) is defined by the following properties

▶ $g(\,\cdot\,,\xi)$ is a fundamental solution with pole at $\xi\in(a,b)$

$$\bullet \ B_1g=B_2g=0$$

Since the difference of any two such functions has a continuous first derivative at $x = \xi$ and satisfies the problem with data $\{0; 0, 0\}$ (which has only the trivial solution), Green's function is uniquely defined, if it exists at all.

We write

$$Lg = \delta(x - \xi),$$
 $x, \xi \in (a, b),$ $B_1g = 0,$ $B_2g = 0.$