Second-Order Boundary Value Problems

The Second－Order Equation

We consider

$$
L u=a_{2}(x) u^{\prime \prime}+a_{1}(x) u^{\prime}+a_{0}(x) u=f \quad \text { on }(a, b) \subset \mathbb{R}
$$

where
－f is piecewise continuous on $[a, b]$ ，
－$a_{0}, a_{1}, a_{2} \in C([a, b])$ ，
－$a_{p}(x) \neq 0$ for all $x \in[a, b]$ ．
As usual，a classical solution
－is continuous on $[a, b]$ ，
－is continuously differentiable on (a, b) ，
－is twice differentiable and satisfies $L u=f$ at all points in (a, b) where where f is continuous．

Boundary Conditions
We impose the boundary conditions

$$
\begin{aligned}
& B_{1} u:=\alpha_{11} u(a)+\alpha_{12} u^{\prime}(a)+\beta_{11} u(b)+\beta_{12} u^{\prime}(b)=\gamma_{1}, \\
& B_{2} u:=\alpha_{21} u(a)+\alpha_{22} u^{\prime}(a)+\beta_{21} u(b)+\beta_{22} u^{\prime}(b)=\gamma_{2},
\end{aligned}
$$

where $\alpha_{i j}, \beta_{i j}, \gamma_{j} \in \mathbb{R}, i, j=1,2$, and the row vectors

$$
\left(\alpha_{11}, \alpha_{12}, \beta_{11}, \beta_{12}\right) \quad \text { and } \quad\left(\alpha_{21}, \alpha_{22}, \beta_{21}, \beta_{22}\right)
$$

are assumed to be independent.
B_{1} and B_{2} are called boundary functionals.
We say that $\left\{f ; \gamma_{1}, \gamma_{2}\right\}$ is the data for the boundary value problem $\left(L, B_{1}, B_{2}\right)$.

JOINT INSTITUTE
交大密西柤学院

Types of Boundary Conditions

－Homogeneous boundary conditions：$\gamma_{1}=\gamma_{2}=0$
－Fully homogeneous boundary value problem：data $\{0 ; 0,0\}$
－Unmixed or separated boundary conditions：

$$
\begin{aligned}
& B_{1} u=\alpha_{11} u(a)+\alpha_{12} u^{\prime}(a)=\gamma_{1}, \\
& B_{2} u=\beta_{21} u(b)+\beta_{22} u^{\prime}(b)=\gamma_{2},
\end{aligned}
$$

－Initial conditions：

$$
\begin{aligned}
& B_{1} u=u(a)=\gamma_{1}, \\
& B_{2} u=u^{\prime}(a)=\gamma_{2} .
\end{aligned}
$$

Superposition principle

Suppose
－u solves $\left(L, B_{1}, B_{2}\right)$ with data $\left\{f ; \gamma_{1}, \gamma_{2}\right\}$
－\widetilde{u} solves $\left(L, B_{1}, B_{2}\right)$ with data $\left\{\tilde{f} ; \widetilde{\gamma}_{1}, \widetilde{\gamma}_{2}\right\}$
Then
－$c_{1} u+c_{2} \widetilde{u}$ solves $\left(L, B_{1}, B_{2}\right)$ with data

$$
\left\{c_{1} f+c_{2} \widetilde{f} ; c_{1} \gamma_{1}+c_{2} \widetilde{\gamma}_{1}, c_{1} \gamma_{1}+c_{2} \widetilde{\gamma}_{2}\right\}
$$

Existence and Uniqueness

－If the problem with data $\{0 ; 0,0\}$ has only the trivial solution $u \equiv 0$ ，then the problem $\left\{f ; \gamma_{1}, \gamma_{2}\right\}$ will have at most one classical solution．
－If the problem with data $\{0 ; 0,0\}$ has a non－trivial solution， then the problem $\left\{f ; \gamma_{1}, \gamma_{2}\right\}$ will have either no classical solution or an infinite number of classical solutions．

Major Assumption：Unless otherwise stated，we will always suppose that the problem with data $\{0 ; 0,0\}$ has only the trivial solution．

Example of Non－Uniqueness／Non－Existence

$$
-u^{\prime \prime}=f(x), \quad 0<x<1, \quad u^{\prime}(0)=\gamma_{1}, \quad u^{\prime}(1)=\gamma_{2} .
$$

The problem with data $\{0 ; 0,0\}$ has the non－trivial solution $u(x)=1$ ．

There can only be a solution of this problem if

$$
\int_{0}^{1} f(x) d x=\gamma_{1}-\gamma_{2}
$$

－For data $\{1 ; 0,0\}$ there are no classical solutions．
－For data $\{\sin (2 \pi x) ; 0,0\}$ there is an infinite number of solutions：

$$
u(x)=C-\frac{x}{2 \pi}+\frac{1}{4 \pi^{2}} \sin (2 \pi x), \quad C \in \mathbb{R}
$$

Fundamental Solution

A fundamental solution $E(x, \xi)$ for L with pole at $\xi \in[a, b]$ satisfies

$$
L E=\delta(x-\xi), \quad x, \xi \in(a, b)
$$

in the distributional sense．
We can construct a fundamental solution by imposing
－$L E=0$ for $a<x<\xi$ and $\xi<x<b$
－E continuous on $[a, b]$ ，including at $x=\xi$
－Jump condition： $\lim _{\varepsilon \searrow 0}\left(\left.\frac{d E}{d x}\right|_{x=\xi+\varepsilon}-\left.\frac{d E}{d x}\right|_{x=\xi-\varepsilon}\right)=\frac{1}{a_{2}(\xi)}$

Green＇s Function

Green＇s function $g(x, \xi)$ for $\left(L, B_{1}, B_{2}\right)$ is defined by the following properties
－$g(\cdot, \xi)$ is a fundamental solution with pole at $\xi \in(a, b)$
－$B_{1} g=B_{2} g=0$
Since the difference of any two such functions has a continuous first derivative at $x=\xi$ and satisfies the problem with data $\{0 ; 0,0\}$（which has only the trivial solution），Green＇s function is uniquely defined，if it exists at all．

We write

$$
L g=\delta(x-\xi), \quad x, \xi \in(a, b), \quad B_{1} g=0, \quad B_{2} g=0 .
$$

