

The Inhomogeneous Equation

Ordinary Differential Equations

We now discuss the inhomogeneous equation

$$Lu = f$$
 on an open interval $I \subset \mathbb{R}$

where

$$L = a_p(x)\frac{d^p}{dx^p} + \dots + a_1(x)\frac{d}{dx} + a_0(x)$$

and

• f is piecewise continuous on the closure \overline{I} of I,

►
$$a_0, a_1, \ldots, a_p \in C(\overline{I}),$$

•
$$a_p(x) \neq 0$$
 for all $x \in I$.

The Function u_{ξ}

Recall how to construct a causal fundamental solution for *L*: Take $I = \mathbb{R}$ and fix $\xi \in \mathbb{R}$. Define u_{ξ} to satisfy

$$\mathit{Lu}_{\xi}=\mathsf{0}$$
 on $\mathbb R$

with initial values

$$u_{\xi}(\xi) = 0, \qquad \dots, \qquad u_{\xi}^{(p-2)}(\xi) = 0, \qquad u_{\xi}^{(p-1)}(\xi) = \frac{1}{a_{p}(\xi)}.$$

 u_{ξ} is the solution of the IVP for L on $I = \mathbb{R}$ with data

$$\left\{0;0,\ldots,0,\frac{1}{a_p(\xi)}\right\}_{\xi}$$

Interpretation of u_{ξ}

We set

$$E(x,\xi) := H(x-\xi)u_{\xi}(x),$$
 (I.1)

where H is the Heaviside function.

If the coefficient functions are smooth, $a_1 \dots, a_p \in C^{\infty}(\mathbb{R})$, we can interpret *L* as acting on the distribution *E* and find

$$LE = \delta(x - \xi).$$

Solution Formula for the Inhomogeneous Equation

We would therefore expect that the solution of

$$Lu = f$$
 on \mathbb{R} , $u(x_0) = 0$, ..., $u^{(p-1)}(x_0) = 0$,

is given by

$$u(x) = \int_{x_0}^{\infty} E(x,\xi) f(\xi) \, d\xi = \int_{x_0}^{x} u_{\xi}(x) f(\xi) \, d\xi.$$

Note: By the chain rule,

$$u'(x) = u_x(x)f(x) + \int_{x_0}^x u'_{\xi}(x)f(\xi) d\xi$$

where of course

$$u_x(x)=u_{\xi}(x)\big|_{\xi=x}.$$

Verification of the Solution Formula

Since $u_{\xi}(\xi) = 0$ for any $\xi \in \mathbb{R}$, we have

$$u(x) = \int_{x_0}^{x} u_{\xi}(x) f(\xi) d\xi,$$

$$u'(x) = \underbrace{u_x(x)}_{=0} f(x) + \int_{x_0}^{x} u'_{\xi}(x) f(\xi) d\xi$$

$$= \int_{x_0}^{x} u'_{\xi}(x) f(\xi) d\xi$$

and

$$u(x_0) = u'(x_0) = 0.$$

Verification of the Solution Formula

We continue to differentiate, yielding

$$u^{(p-1)}(x) = \underbrace{u_x^{(p-2)}(x)}_{=0} f(x) + \int_{x_0}^x u_{\xi}^{(p-1)}(x) f(\xi) \, d\xi,$$

so that u satisfies the initial conditions

 $u(x_0) = 0,$ $u'(x_0) = 0,$ \vdots $u^{(p-1)}(x_0) = 0.$

Verification of the Solution Formula

Finally, at all points $x \in I$ where f is continuous,

$$u^{(p)}(x) = \underbrace{u_x^{(p-1)}(x)}_{=1/a_p(x)} f(x) + \int_{x_0}^x u_{\xi}^{(p)}(x) f(\xi) d\xi$$
$$= \frac{f(x)}{a_p(x)} + \int_{x_0}^x u_{\xi}^{(p)}(x) f(\xi) d\xi.$$

This implies that

$$Lu = a_{p}(x)u^{(p)}(x) + \dots + a_{0}(x)u(x)$$

= $f(x) + \int_{x_{0}}^{x} \underbrace{(Lu_{\xi})(x)}_{=0} f(\xi) d\xi$
= $f(x)$.

The Solution Formula

Theorem. The unique classical solution of the initial value problem with data

$${f;0,\ldots,0}_{x_0}$$

is given by

$$u(x) = \int_{x_0}^x u_{\xi}(x) f(\xi) d\xi$$

where u_{ξ} is the solution of the initial value problem with data

$$\{0; 0, \ldots, 0, 1/a_p(\xi)\}_{\xi}$$

If the coefficients a_1, \ldots, a_p of L are constants, then

$$u_{\xi}(x) = u_0(x-\xi)$$

The Inhomogeneous Equation with General Data

The solution of the initial value problem with data

$$\{f; \gamma_1, \ldots, \gamma_p\}_{x_0}$$

is given by

$$u(x) = \int_{x_0}^x u_{\xi}(x) f(\xi) d\xi + \gamma_1 u_1(x) + \cdots + \gamma_p u_p(x),$$

where u_k , $k = 1, \ldots, p$, is a solution of the equation with data

$$\{0; 0, \dots, 0, 1, 0, \dots, 0\}_{x_0}$$