交大密西相学院

The Homogeneous Equation with Non－Vanishing Initial Conditions

Abel＇s Formula for the Wronskian

Suppose that u_{1}, \ldots, u_{p} are p solutions of

$$
L u=0 \quad \text { on } I \subset \mathbb{R}
$$

where L is given as in the previous section．
Then Abel＇s formula for the Wronskian is

$$
W\left(u_{1}, \ldots, u_{p} ; x\right)=C \cdot e^{-m(x)} \quad \text { for all } x \in I
$$

where $C \in \mathbb{R}$ is some constant and m is a particular solution of

$$
m^{\prime}(x)=\frac{a_{p-1}(x)}{a_{p}(x)}
$$

Consequence of Abel＇s Formula
If u_{1}, \ldots, u_{p} are solutions of $L u=0$ ，then

$$
W\left(u_{1}, \ldots, u_{p} ; x\right)=0 \quad \text { for all } x \in I
$$

if and only if

$$
W\left(u_{1}, \ldots, u_{p} ; x_{0}\right)=0 \quad \text { for a single } x_{0} \in I
$$

Independence of Solutions

Theorem．Let u_{1}, \ldots, u_{p} be solutions of $L u=0$ ．Then
－u_{1}, \ldots, u_{p} are dependent
if and only if
－$W\left(u_{1}, \ldots, u_{p} ; x_{0}\right)=0$ for some $x_{0} \in I$ ．

Proof．

The Wronskian vanishes at a single point if and only if it vanishes everywhere on I ．

If the solutions are dependent，then the Wronskian vanishes．
However，the converse is not obvious．

Independence of Solutions

Suppose that $W\left(u_{1}, \ldots, u_{p} ; x_{0}\right)=0$ ．
Consider the system of equations

$$
u_{1}\left(x_{0}\right) y_{1}+u_{2}\left(x_{0}\right) y_{2}+\ldots+u_{p}\left(x_{0}\right) y_{p}=0
$$

$u_{1}^{(p-1)}\left(x_{0}\right) y_{1}+u_{2}^{(p-1)}\left(x_{0}\right) y_{2}+\ldots+u_{p}^{(p-1)}\left(x_{0}\right) y_{p}=0$,
for the p unknowns y_{1}, \ldots, y_{p} ．
Since $W\left(u_{1}, \ldots, u_{p} ; x_{0}\right)=0$ ，this system has a non－trivial solution

$$
\left(y_{1}, \ldots, y_{p}\right) \in \mathbb{C}^{p} .
$$

Independence of Solutions

Define

$$
U(x):=y_{1} u_{1}(x)+\cdots+y_{p} u_{p}(x)
$$

Then $U(x)$ solves $L u=0$ with

$$
\begin{aligned}
U\left(x_{0}\right) & =0 \\
U^{\prime}\left(x_{0}\right) & =0 \\
\vdots & \\
U^{(p-1)}\left(x_{0}\right) & =0 .
\end{aligned}
$$

JOINT INSTITUTE交大密西柤学院

Independence of Solutions

Since the solution of an initial value problem is unique，

$$
U(x)=y_{1} u_{1}(x)+\cdots+y_{p} u_{p}(x)=0
$$

for all $x \in I$ ，even though not all of the $y_{k} \in \mathbb{C}$ vanish．
Hence，the functions $\left(u_{1}, \ldots, u_{p}\right)$ are dependent．

Basis of Solutions

I．1．Theorem．Let u_{1}, \ldots, u_{p} be solutions to the initial value problem for L on I with data
－$\{0 ; 1,0, \ldots, 0\}_{x_{0}}$ in the case of u_{1} ，
－$\{0 ; 0,1,0, \ldots, 0\}_{x_{0}}$ in the case of u_{2} ，
－$\{0 ; 0, \ldots, 0,1\}_{x_{0}}$ in the case of u_{n} ．

Then $\left\{u_{1}, \ldots, u_{p}\right\}$ is an independent set．
Any solution of $L u=0$ on I can be written in the form

$$
u(x)=c_{1} u_{1}(x)+\cdots+c_{p} u_{p}(x)
$$

for some $c_{1}, \ldots, c_{p} \in \mathbb{C}$ ．

Basis of Solutions

The set is independent because $W\left(u_{1}, \ldots, u_{p} ; x_{0}\right)=1 \neq 0$ ．
Any solution u_{0} of $L u=0$ is completely determined by its initial values at some $x_{0} \in \bar{I}$ ．

Since

$$
u(x):=\underbrace{u_{0}\left(x_{0}\right)}_{=: c_{1}} u_{1}(x)+\underbrace{u_{0}^{\prime}\left(x_{0}\right)}_{=: c_{2}} u_{2}(x)+\cdots+\underbrace{u_{0}^{(p-1)}\left(x_{0}\right)}_{=: c_{p}} u_{p}(x)
$$

has just these initial values and solves $L u=0$ ，

$$
u(x)=u_{0}(x)
$$

This gives the desired representation．

