

The Homogeneous Equation with Non-Vanishing Initial Conditions

Abel's Formula for the Wronskian

Suppose that u_1, \ldots, u_p are p solutions of

$$Lu = 0$$
 on $I \subset \mathbb{R}$.

where L is given as in the previous section.

Then Abel's formula for the Wronskian is

$$W(u_1,\ldots,u_p;x)=C\cdot e^{-m(x)}$$
 for all $x\in I$

where $C \in \mathbb{R}$ is some constant and *m* is a particular solution of

$$m'(x) = \frac{a_{p-1}(x)}{a_p(x)}.$$

Consequence of Abel's Formula

If u_1, \ldots, u_p are solutions of Lu = 0, then

$$W(u_1,\ldots,u_p;x)=0$$
 for all $x\in I$

if and only if

$$W(u_1,\ldots,u_p;x_0)=0$$
 for a single $x_0\in I$.

Theorem. Let u_1, \ldots, u_p be solutions of Lu = 0. Then

• u_1, \ldots, u_p are dependent

if and only if

•
$$W(u_1,\ldots,u_p;x_0) = 0$$
 for some $x_0 \in I$.

Proof.

The Wronskian vanishes at a single point if and only if it vanishes everywhere on I.

If the solutions are dependent, then the Wronskian vanishes.

However, the converse is not obvious.

Suppose that $W(u_1, \ldots, u_p; x_0) = 0$.

Consider the system of equations

$$u_1(x_0)y_1 + u_2(x_0)y_2 + \dots + u_p(x_0)y_p = 0,$$

$$\vdots$$

$$u_1^{(p-1)}(x_0)y_1 + u_2^{(p-1)}(x_0)y_2 + \dots + u_p^{(p-1)}(x_0)y_p = 0,$$

for the *p* unknowns y_1, \ldots, y_p .

Since $W(u_1, \ldots, u_p; x_0) = 0$, this system has a non-trivial solution

$$(y_1,\ldots,y_p)\in\mathbb{C}^p.$$

Define

$$U(x) := y_1 u_1(x) + \cdots + y_p u_p(x).$$

Then
$$U(x)$$
 solves $Lu = 0$ with

 $U(x_0) = 0$ $U'(x_0) = 0$ \vdots $U^{(p-1)}(x_0) = 0.$

Since the solution of an initial value problem is unique,

$$U(x) = y_1 u_1(x) + \cdots + y_p u_p(x) = 0$$

for all $x \in I$, even though not all of the $y_k \in \mathbb{C}$ vanish. Hence, the functions (u_1, \ldots, u_p) are dependent.

Basis of Solutions

÷

I.1. Theorem. Let u_1, \ldots, u_p be solutions to the initial value problem for L on I with data

•
$$\{0; 1, 0, ..., 0\}_{x_0}$$
 in the case of u_1 ,

•
$$\{0; 0, 1, 0, \dots, 0\}_{x_0}$$
 in the case of u_2 ,

•
$$\{0; 0, ..., 0, 1\}_{x_0}$$
 in the case of u_n .

Then $\{u_1, \ldots, u_p\}$ is an independent set.

Any solution of Lu = 0 on I can be written in the form

$$u(x) = c_1 u_1(x) + \cdots + c_p u_p(x)$$

for some $c_1, \ldots, c_p \in \mathbb{C}$.

Basis of Solutions

The set is independent because $W(u_1, \ldots, u_p; x_0) = 1 \neq 0$.

Any solution u_0 of Lu = 0 is completely determined by its initial values at some $x_0 \in \overline{I}$.

Since

$$u(x) := \underbrace{u_0(x_0)}_{=:c_1} u_1(x) + \underbrace{u'_0(x_0)}_{=:c_2} u_2(x) + \dots + \underbrace{u_0^{(p-1)}(x_0)}_{=:c_p} u_p(x).$$

has just these initial values and solves Lu = 0,

$$u(x)=u_0(x).$$

This gives the desired representation.