交大密西柤学院

Initial Value Problems，Independence and the Wronksian

Ordinary Differential Equations

Consider

$$
L u=f \quad \text { on an open interval } I \subset \mathbb{R}
$$

where

$$
L=a_{p}(x) \frac{d^{p}}{d x^{p}}+\cdots+a_{1}(x) \frac{d}{d x}+a_{0}(x)
$$

and
－f is piecewise continuous on the closure \bar{I} of I ，
－$a_{0}, a_{1}, \ldots, a_{p} \in C(\bar{I})$,
－$a_{p}(x) \neq 0$ for all $x \in I$ ．

Initial Value Problems

Definition．An initial value problem（IVP）for L on／consists of the equation

$$
L u=f \quad \text { on } l
$$

and initial conditions at a point $x_{0} \in \bar{I}$ given by

$$
u\left(x_{0}\right)=\gamma_{1}, \quad u^{\prime}\left(x_{0}\right)=\gamma_{2}, \quad \ldots, \quad u^{(p-1)}\left(x_{0}\right)=\gamma_{p}
$$

for some numbers $\gamma_{1}, \ldots, \gamma_{p} \in \mathbb{R}$ ．
The data for the IVP is summarized by writing

$$
\left\{f ; \gamma_{1}, \gamma_{2}, \ldots, \gamma_{p}\right\}_{x_{0}}
$$

Classical Solutions

Recall that a classical solution of the ODE
－is continuous on \bar{l} ，
－is $p-1$ times continuously differentiable on I ，
－is p times differentiable for all $x \in I$ where f is continuous，
－satisfies $L u=f$ at all points in I where where f is continuous．
Theorem．The initial value problem

$$
\begin{gathered}
L u=f \quad \text { on } I, \\
u\left(x_{0}\right)=\gamma_{1}, \\
\vdots \\
u^{(p-1)}\left(x_{0}\right)=\gamma_{p},
\end{gathered}
$$

has a unique classical solution on \bar{I} ．

The condition $a_{p}(x) \neq 0$ on \bar{l} is essential.
Examples.

- The initial value problem

$$
x u^{\prime}-2 u=0, \quad x \in \mathbb{R}, \quad u(0)=0
$$

has more than one solution.

- The initial value problem

$$
x u^{\prime}+u=0, \quad x \in \mathbb{R}, \quad u(0)=0
$$

has no solution.

Linear Independence

Definition. A family $\left\{f_{k}\right\}_{k=1}^{n}$ of functions $f_{1}, \ldots, f_{n}: I \rightarrow \mathbb{C}$ is said to be (linearly) independent if

$$
c_{1} f_{1}(x)+c_{2} f_{2}(x)+\cdots+c_{n} f_{n}(x)=0 \quad \text { for all } x \in I
$$

with $c_{1}, \ldots, c_{n} \in \mathbb{C}$ implies

$$
c_{1}=c_{2}=\cdots=c_{n}=0
$$

If $\left\{f_{k}\right\}_{k=1}^{n}$ is not independent, we say that the family is (linearly) dependent.

The Wronskian

Definition．For $f_{1}, \ldots, f_{n} \in C^{(p-1)}(I)$

$$
W\left(f_{1}, \ldots, f_{n} ; x\right)=\operatorname{det}\left(\begin{array}{cccc}
f_{1}(x) & f_{2}(x) & \ldots & f_{n}(x) \\
f_{1}^{\prime}(x) & f_{2}^{\prime}(x) & \ldots & f_{n}^{\prime}(x) \\
\vdots & \vdots & & \vdots \\
f_{1}^{(n-1)}(x) & f_{2}^{(n-1)}(x) & \ldots & f_{n}^{(n-1)}(x)
\end{array}\right)
$$

is called the Wronskian of $\left\{f_{k}\right\}_{k=1}^{n}$ ．
Note：

If $\left\{f_{k}\right\}_{k=1}^{n}$ is dependent，then $W\left(f_{1}, \ldots, f_{n} ; x\right)=0$ ．
The converse is in general false！

The Wronskian

Example．Suppose $f_{1}, f_{2}:(-1,1) \rightarrow \mathbb{R}$ are given by

$$
f_{1}(x)=x^{2}
$$

$$
f_{2}(x)=|x| \cdot x
$$

Then f_{1} and f_{2} are independent，but

$$
W\left(f_{1}, f_{2} ; x\right)=0 \quad \text { for all } x \in(-1,1)
$$

