

The Equilibrium Heat Equation and Classical Solutions

The Stationary Heat Equation

Heat equation: $\frac{\partial \theta}{\partial t} = \frac{\partial^2 \theta}{\partial x^2} + q(x, t), \qquad 0 < x < 1, t > 0.$

Suppose q(x, t) = f(x) and search for an equilibrium solution

 $\theta(x,t)=u(x).$

We obtain the Stationary Heat Equation

$$-\frac{d^2u}{dx^2} = f(x), \qquad \qquad 0 < x < 1.$$
 (I.1a)

We impose boundary conditions

$$u(0) = \alpha, \qquad u(1) = \beta, \qquad \alpha, \beta \in \mathbb{R}.$$
 (I.1b)

Data for the Equilibrium Heat Equation

The triple (f, α, β) is called the data for the equilibrium heat equation.

Superposition Principle: If

- u_1 satisfies (I.1) with data (f_1, α_1, β_1) and
- u_2 satisfies (I.1) with data (f_2, α_2, β_2)

then

• $u_1 + u_2$ satisfies (I.1) with data $(f_1 + f_2, \alpha_1 + \alpha_2, \beta_1 + \beta_2)$.

Application:

Solution for (f, 0, 0) + Solution for $(0, \alpha, \beta)$ = Solution for (f, α, β)

Classical Solutions

Consider the ODE

 $a_p(x)u^{(p)}(x) + \cdots + a_1(x)u'(x) + a_0(x)u(x) = f(x)$

on the interval $(a, b) \subset \mathbb{R}$ with

- a_0, \ldots, a_p continuous on [a, b]
- ▶ f piecewise continuous on [a, b]
- A classical solution is a function u such that
 - u is continuous on [a, b]
 - u is p-1 times continuously differentiable on (a, b)
 - ► u is p times differentiable at all points in (a, b) where f is continuous. At these points, u solves the ODE.

Classical Solutions

Thus, a classical solution to the boundary value problem

$$-rac{d^2 u}{dx^2} = 0,$$
 $0 < x < 1,$ $u(0) = u(1) = 0$

can not be something ridiculous like

$$u(x) = \begin{cases} 1 & 0 < x < 1. \\ 0 & x = 0 \text{ or } x = 1. \end{cases}$$

However: A classical solution does not have to be p-times differentiable at points where f has jumps!

Discontinuous Inhomogeneities

Example: Fix $0 < \xi < 1$ and consider the problem

$$-\frac{d^2 u}{dx^2} = H_{\xi}(x), \qquad 0 < x < 1, \qquad u(0) = u(1) = 0,$$

with the Heaviside function

$$egin{aligned} \mathcal{H}_{\xi}(x) &= egin{cases} 0 & x < \xi \ 1 & x > \xi \end{aligned}$$

and we can define $H_{\xi}(\xi)$ any way we like.

Denote a solution of the boundary value problem by $u(x; \xi)$.

Discontinuous Inhomogeneities

Solve separately in the intervals $(0,\xi)$ and $(\xi,1)$:

$$u(x;\xi) = \begin{cases} Ax & 0 < x < \xi, \\ -(x-1)^2/2 + B(1-x) & \xi < x < 1, \end{cases}$$

with integration constants $A, B \in \mathbb{R}$.

Continuity of u implies

$$\lim_{x \nearrow \xi} u(x;\xi) = \lim_{x \searrow \xi} u(x;\xi) \quad \Rightarrow \quad A\xi = -(\xi-1)^2/2 + B(1-\xi).$$

Continuous differentiability implies

$$\lim_{x \nearrow \xi} u'(x;\xi) = \lim_{x \searrow \xi} u'(x;\xi) \qquad \Rightarrow \qquad A = -(\xi - 1) - B.$$

Discontinuous Inhomogeneities

