交大密西根学院

Application of the Fourier Transform to Partial Differential Equations

The Convolution for Tempered Distributions

For $\varphi, \psi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ the convolution is defined by

$$
(\varphi * \psi)(y):=\int_{\mathbb{R}^{n}} \varphi(y-x) \psi(x) d x .
$$

Does not work for two distributions！
Definition．Let $T \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ and $\psi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ ．Then $T * \psi \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ is defined by

$$
(T * \psi)(\varphi):=T(\widetilde{\psi} * \varphi)
$$

where $\widetilde{\psi}(x)=\psi(-x)$ ．
If $T=T_{g}$ for some $g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ ，

$$
T_{g} * \psi=T_{g * \psi}
$$

The Convolution for Tempered Distributions

Example．The convolution of the Dirac distribution with a function $\psi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ is given by

$$
\begin{aligned}
\left(T_{\delta} * \psi\right)(\varphi) & =T_{\delta}\left(\int_{\mathbb{R}} \psi(-x) \varphi((\cdot)-x) d x\right) \\
& =\int_{\mathbb{R}} \psi(-x) \varphi(0-x) d x \\
& =\int_{\mathbb{R}} \psi(x) \varphi(x) d x=T_{\psi} \varphi,
\end{aligned}
$$

so

$$
\delta * \psi=\psi
$$

Properties of the Convolution

For $T \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ and $\psi, \chi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$
（i）$D^{\beta}(T * \psi)=\left(D^{\beta} T\right) * \psi=T * D^{\beta} \psi$ ，
（ii）$(T * \psi) * \chi=T *(\psi * \chi)$
（iii）$\widehat{T * \psi}=(2 \pi)^{n / 2} \hat{\psi} \hat{T}$ where

$$
\hat{\psi} \hat{T}(\varphi)=\hat{T}(\hat{\psi} \varphi) .
$$

Very useful for solving partial differential equations！

Example：The Heat Equation

Heat equation on \mathbb{R}^{n} ：

$$
\frac{\partial u}{\partial t}-\Delta u=0
$$

$$
(x, t) \in \mathbb{R}^{n} \times \mathbb{R}_{+}
$$

Initial condition：

$$
u(x, 0)=f(x), \quad f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)
$$

Assumption：

$$
u(\cdot, t) \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \quad \text { for all } t \geq 0
$$

Example：The Heat Equation

Treat $t \geq 0$ as a parameter and apply Fourier transform＂with respect to the x－variable＂．Then

$$
\frac{\partial \hat{u}}{\partial t}+|\xi|^{2} \hat{u}=0, \quad(\xi, t) \in \mathbb{R}^{n} \times \mathbb{R}_{+}
$$

with initial condition

$$
\hat{u}(\xi, 0)=\hat{f}(\xi)
$$

Unique solution：

$$
\hat{u}(\xi, t)=e^{-t|\xi|^{2}} \hat{f}(\xi)
$$

Set

$$
\hat{\psi}(\xi, t):=e^{-t|\xi|^{2}}
$$

Example：The Heat Equation

Then

$$
\hat{u}(\xi, t)=\hat{\psi}(\xi, t) \hat{f}(\xi)
$$

By convolution properties，for $t>0$ ，

$$
u(x, t)=(2 \pi)^{-n / 2} f * \psi(\cdot, t)
$$

From $\hat{\psi}(\xi, t):=e^{-t|\xi|^{2}}$ ，

$$
\psi(x, t)=(2 t)^{-n / 2} e^{-|x|^{2} /(4 t)}
$$

Then

$$
u(x, t)=f * p(\cdot, t)
$$

where

$$
p(x, t):=(4 \pi t)^{-n / 2} e^{-|x|^{2} /(4 t)}
$$

（Heat kernel）

Example：The Heat Equation

Theorem．The heat equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}-\Delta u=0, \quad(x, t) \in \mathbb{R}^{n} \times \mathbb{R}_{+} \tag{I.1}
\end{equation*}
$$

with initial condition

$$
u(x, 0)=f(x), \quad f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)
$$

has the unique solution $u(\cdot, t) \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ given by

$$
u(x, t)=f * p(x, t), \quad t>0
$$

where

$$
p(x, t):=(4 \pi t)^{-n / 2} e^{-|x|^{2} /(4 t)}
$$

Example：The Heat Equation

If $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ ，then $u(\cdot, t) \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ for all $t>0$ ．
Furthermore，

$$
u(x, t)=f * p(x, t)=(4 \pi t)^{-n / 2} \int_{\mathbb{R}^{n}} f(y) e^{-|x-y|^{2} /(4 t)} d y
$$

Since $p(\cdot, t)$ is a delta family as $t \searrow 0$ ，we see that

$$
\lim _{t \searrow 0} u(x, t)=f(x)
$$

as expected．
These formulas hold also if f is only continuous and bounded．
The uniqueness of the solution requires $u(\cdot, t) \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ ．There exist other solutions of the heat equation with initial condition that ＂blow up＂at infinity．

