Properties of the Fourier Transform

Theorem. Let $\varphi \in \mathcal{S}(\mathbb{R}^n)$. Then

$$\varphi(x) = \frac{1}{(2\pi)^{n/2}} \int_{\mathbb{R}^n} \hat{\varphi}(\xi) e^{i\langle x, \xi \rangle} d\xi$$

Proof for n = 1.

Suppose first that $\varphi \in \mathcal{D}(\mathbb{R}) \subset \mathcal{S}(\mathbb{R})$. Then

$$\begin{split} \frac{1}{\sqrt{2\pi}} \int_{-R}^{R} \hat{\varphi}(\xi) e^{ix\xi} \, d\xi &= \frac{1}{2\pi} \int_{-R}^{R} e^{ix\xi} \int_{-\infty}^{\infty} \varphi(\omega) e^{-i\omega\xi} \, d\omega \, d\xi \\ &= \int_{-\infty}^{\infty} \varphi(\omega) \frac{1}{2\pi} \int_{-R}^{R} e^{i(x-\omega)\xi} \, d\xi \, d\omega \\ &= \int_{-\infty}^{\infty} \varphi(x-y) \frac{1}{2\pi} \int_{-R}^{R} e^{iy\xi} \, d\xi \, dy \end{split}$$

Recall that the Dirichlet kernel

$$\frac{1}{2\pi} \int_{-R}^{R} e^{iy\xi} d\xi$$

is a delta family that converges to $\delta(y)$ as $R \to \infty$.

Therefore,

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{\varphi}(\xi) e^{ix\xi} d\xi = \lim_{R \to \infty} \int_{-\infty}^{\infty} \varphi(x - y) \frac{1}{2\pi} \int_{-R}^{R} e^{iy\xi} d\xi dy$$
$$= \varphi(x - 0)$$
$$= \varphi(x)$$

This proves the statement for $\varphi \in \mathcal{D}(\mathbb{R})$.

Let $\chi_n \in \mathcal{D}(\mathbb{R})$, $n \in \mathbb{N}$, be cut-off functions with

$$\chi_n(x) = \begin{cases} 1 & |x| < n \\ 0 & |x| > n+1 \end{cases}$$

Now suppose $\varphi \in \mathcal{S}(\mathbb{R})$. Then $\chi_n \varphi \in \mathcal{D}(\mathbb{R})$ and

$$\chi_n \varphi \xrightarrow{n \to \infty} \varphi$$

in $\mathcal{S}(\mathbb{R})$.

The Fourier inversion formula states simply that

$$\hat{\hat{\varphi}}(-x) = \varphi(x)$$
 for all $\varphi \in \mathcal{S}(\mathbb{R})$.

We have proven the inversion formula for all test functions, so

$$\widehat{\widehat{\chi_n\varphi}}(-x) = \chi_n\varphi(x)$$
 for all $n \in \mathbb{N}$.

Since the Fourier transform and the reflection $\varphi(x) \mapsto \varphi(-x)$ are continuous, we can let $n \to \infty$ on both sides, yielding

$$\hat{\varphi}(-x) = \varphi(x).$$

This completes the proof.

Properties of the Fourier Transform

Suppose $\varphi, \psi \in \mathcal{S}(\mathbb{R}^n)$.

(i) (Dilation) For $\alpha \in \mathbb{R}_+$ we define $D_{\alpha}\varphi(x) = \alpha^{n/2}\varphi(\alpha x)$. Then $\mathcal{F}(D_{\alpha}\varphi) = D_{1/\alpha}\mathcal{F}\varphi.$

(ii) (Translation) For
$$y\in\mathbb{R}^n$$
 we define $\tau_y\varphi(x)=\varphi(x-y)$. Then
$$(\mathcal{F}\tau_y\varphi)(\xi)=e^{-i\langle y,\xi\rangle}\mathcal{F}\varphi(\xi).$$

(iii) (Unitarity) Let $\langle \varphi, \psi \rangle_{L^2} := \int_{\mathbb{R}^n} \overline{\varphi(x)} \psi(x) \, dx$. Then $\langle \hat{\varphi}, \hat{\psi} \rangle_{L^2} = \langle \varphi, \psi \rangle_{L^2}.$

The Convolution

Definition. The convolution of $\varphi, \psi \in \mathcal{S}(\mathbb{R}^n)$ is defined by

$$(\varphi * \psi)(y) := \int_{\mathbb{D}^n} \varphi(y-x)\psi(x) dx.$$

Properties. For $\varphi, \psi, \chi \in \mathcal{S}(\mathbb{R}^n)$,

- i) $\varphi * \psi \in \mathcal{S}(\mathbb{R}^n)$
- ii) $\varphi * \psi = \psi * \varphi$
- iii) $\varphi * (\psi * \chi) = (\varphi * \psi) * \chi$
- iv) $(2\pi)^{n/2}\widehat{\varphi\cdot\psi} = \hat{\varphi}*\hat{\psi}$
- $\mathbf{v}) \ \widehat{\varphi * \psi} = (2\pi)^{n/2} \hat{\varphi} \cdot \hat{\psi}$