आiciox
交大密西相学院

Elementary Operations on Distributions

Extension by Duality

Basic Idea：

－Any operation in calculus can be performed on test functions $\varphi \in \mathcal{D}=C_{0}^{\infty}$.
－Use the＂dual pairing＂

$$
T_{g} \varphi=\int_{\mathbb{R}^{n}} g(x) \varphi(x) d x
$$

to see what equivalent operation can be performed on ＂sufficiently nice＂$g \in L_{\text {loc }}^{1}$ ．
－Define the operation on distributions in terms of an equivalent operation on test functions．

Dilation

Dilation operator：For $\alpha>0$ ，define

$$
D_{\alpha}: \mathcal{D}\left(\mathbb{R}^{n}\right) \mapsto \mathcal{D}\left(\mathbb{R}^{n}\right), \quad\left(D_{\alpha} \varphi\right)(x)=\alpha^{n / 2} \cdot \varphi(\alpha x)
$$

Then for a regular distribution T_{g} ，

$$
\begin{aligned}
T_{g}\left(D_{\alpha} \varphi\right) & =\alpha^{n / 2} \int_{\mathbb{R}^{n}} g(x) \varphi(\alpha x) d x \\
& =\frac{1}{\alpha^{n / 2}} \int_{\mathbb{R}^{n}} g\left(\frac{x}{\alpha}\right) \varphi(x) d x \\
& =T_{D_{1 / \alpha} g} \varphi \\
& =:\left(D_{1 / \alpha} T_{g}\right) \varphi
\end{aligned}
$$

Dilation

Definition．The dilation operator

$$
D_{\alpha}: \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right) \mapsto \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)
$$

is defined by

$$
\left(D_{\alpha} T\right)(\varphi):=T\left(D_{1 / \alpha} \varphi\right) .
$$

This definition ensures that

$$
T_{D_{\alpha} g}=D_{\alpha} T_{g}
$$

and extends the definition of the dilation from $L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$ to $\mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ ．

Translation

Translation operator：For $y \in \mathbb{R}^{n}$ ，define

$$
\tau_{y}: \mathcal{D}\left(\mathbb{R}^{n}\right) \mapsto \mathcal{D}\left(\mathbb{R}^{n}\right), \quad\left(\tau_{y} \varphi\right)(x)=\varphi(x-y)
$$

Then for a regular distribution T_{g} ，
$T_{g}\left(\tau_{y} \varphi\right)=\int_{\mathbb{R}^{n}} g(x) \varphi(x-y) d x=\int_{\mathbb{R}^{n}} g(x+y) \varphi(x) d x=T_{\tau_{-y}} \varphi$.

Definition．We define the translation operator

$$
\tau_{y}: \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right) \mapsto \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right) \quad\left(\tau_{y} T\right)(\varphi):=T\left(\tau_{-y} \varphi\right)
$$交大密西柤学院

The Translation of Distributions
Example．Let $T_{\delta} \varphi=\varphi(0)$ ．Then

$$
\left(\tau_{\xi} T_{\delta}\right)(\varphi)=T_{\delta}\left(\tau_{-\xi} \varphi\right)=\left.\varphi(x+\xi)\right|_{x=0}=\varphi(\xi) .
$$

Sum and Scalar Multiplication

$\mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ is a vector space：
－$T_{1}, T_{2} \in \mathcal{D}^{\prime}$ implies $T_{1}+T_{2} \in \mathcal{D}^{\prime}$ with

$$
\left(T_{1}+T_{2}\right)(\varphi)=T_{1} \varphi+T_{2} \varphi
$$

－$T \in \mathcal{D}^{\prime}, \lambda \in \mathbb{C}$ implies $\lambda T \in \mathcal{D}^{\prime}$ with

$$
(\lambda T)(\varphi)=\lambda \cdot T \varphi
$$

The pointwise sum and scalar multiple of functions generalize automatically to distributions：

$$
T_{f+g}=T_{f}+T_{g}, \quad T_{\lambda f}=\lambda T_{f}
$$

Multiplication by Smooth Functions

Multiplication operator：For $h \in C^{\infty}\left(\mathbb{R}^{n}\right)$ ，define

$$
M_{h}: \mathcal{D}\left(\mathbb{R}^{n}\right) \mapsto \mathcal{D}\left(\mathbb{R}^{n}\right), \quad\left(M_{h} \varphi\right)(x)=h(x) \varphi(x)
$$

Then for a regular distribution T_{g} ，

$$
T_{g}\left(M_{h} \varphi\right)=\int_{\mathbb{R}^{n}} g(x) h(x) \varphi(x) d x=T_{M_{h} g} \varphi
$$

Definition．We define the mutliplication operator

$$
M_{h}: \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right) \mapsto \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right) \quad\left(M_{h} T\right)(\varphi):=T\left(M_{h} \varphi\right)
$$

Warning：We can not multiply a distribution with a non－smooth function or another distribution！

