Vv557 Methods of Applied Mathematics 11

Green Functions and s
Boundary Value Problems JOINT INSTITUTE

Assignment 14 (Selected Solutions) RABRERFRE

Exercise 14.1 Laplace Equation on the Infinite Strip
We consider a Dirichlet problem for the negative Laplace operator on the infinite strip S = R x (0,a), a > 0, in

R?, i.e., the problem
—Au =0, €S, u’ = f(x1), 1 ER, (1)

where we assume that f is a bounded function. We have obtained Green’s function in terms of a formal series
of image charges,
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where
&, = (61,2an £ &).

i) Show that the series in fact converges.

ii) Calculate the sum of the series to obtain

14 (Z(w2 + &2)) — cos (Z(x2 — &)
cosh (Z(zy — &) —cos (Z(z2 + &) |

g(z;§) = —1

iii) Verify that

ag(x;@T _ 1 sin (F2)
9 g 2acosh (Z(zy — &) + cos (Zaz)

in agreement with the results obtained previously by the partial eigenfunction expansions.

Solution.
i) To verify the convergence of the series, note that
o — &, = (21— &)% + (22 F & — 2an)’
= (21 — &) + (22 F &) — dan(va F &) + 4a’n?

Then
|z — §§n| = )2 (332 F 52) — dan(zs F &2) + 4a’n?
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It follows that
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and the series converges, because all terms that are proportional to 1/n cancel.




ii) At this point it becomes very convenient to introduce complex numbers.! We define
z:= w1 + ixa, ¢ =& + 1.
Then, purely algebraically, we have

|z — &5 17 = (x1 — &) + (22 — & — 2an)® = |2 — ¢ — 2ian|?,

|z — 52_n|2 = (71 — &) + (22 + & — 2an)? = |z — { — 2ian|?

where Z denotes the complex conjugate of z € C as usual and the absolute value on the left refers to that
oif R? while the one on the right refers to that of C.

The convergence of the series and the continuity of the logarithm guarantee that we can write
|z — ¢ — 2ian|
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The trick is now to use the Weierstrass factorization of the hyperbolic sine, given by

w H 1- %) = sinh(w) for any w € C.
nez\{0}

So we put our expression in the correct form as follows:
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We then have
1 inh(w* 1 h(Z (s — 2
g(z;6) = —1In M -~ [sin (2:(2 g))|2
2 smh(w ) 47 \Smh (7(2 _ O)|
Recall that
! - . 1 B
cosh(w) := 5(ew +e ), sinh(w) = 5(ew e, weC.

From this we can deduce the analogous addition theorem to that of trigonomentric functions
sinh(a + b) = sinh(a) cosh(b) + sinh(b) cosh(a), a,beC
and also note that cosh(iz) = cos(x), sinh(iz) = isin(z) for x € R. Everything together gives

sinh(x 4 4y) = sinh(z) cos(y) + i sin(y) cosh(x)

1Credit for this part is to Cai Runze, TA for Vv557 in Spring 2018 and many years before that, for writing out the details.



so that, with sinh?(z) = cosh®(z) — 1,

|sinh(z + iy)|? = sinh?(z) cos®(y) + sinh?(y) cosh?(x)
= cosh?(z) cos?(y) — cos®(y) + sin?(y) cosh?(z)

= cosh?(z) — cos?(y).

This implies that

‘sinh (%(z — ()) ’2 = cosh? <%(w1 — 51)) — cos? (i(;vg — 52)) ,

2a
sinh (%(z — C)) ’2 = cosh? (%(xl — {1)> — cos? (%(xz + Ez)) ,

SO
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9(x:8) = <COSh2 (Z(21— &) — cos? (E (22 + &) )

Since cos?(w) = $(1 + cos(2w)), w € C, we further simplify to

o) = 1 N cosh (Z(z1 — &) — cos (Z (22 — &)
g(z; ) 1 (cosh (g(ﬂjl 751)) — cos (Z(I2+§2))>
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Note that g vanishes when x5 = 0 and when x5 = a, as required.
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