Vv557 Methods of Applied Mathematics II

Green Functions and
Boundary Value Problems

Assignment 6

交大密西根学院

Exercise 6．1 Simply Supported Beam

We want to find a fundamental solution of the stationary equation for a simply supported beam，i．e．，a function $g(x, \xi)$ satisfying

$$
\frac{d^{4} g}{d x^{4}}=\delta(x-\xi), \quad 0<x, \xi<1
$$

with boundary conditions

$$
g(0, \xi)=g^{\prime \prime}(0, \xi)=g(1, \xi)=g^{\prime \prime}(1, \xi)=0
$$

i）Find a causal fundamental solution，i．e．，a function E satisfying

$$
\frac{d^{4} E}{d x^{4}}=\delta(x-\xi), \quad 0<x, \xi<1
$$

and $E(x)=0$ for $x<\xi$ ．
ii）Add a solution of the homogeneous equation $\frac{d^{4} u}{d x^{4}}=0$ to E to obtain a function that satisfies the boundary conditions．

Exercise 6．2 Equilibrium Diffusion

The equilibrium concentration u of a substance diffusing in a homogeneous，absorbing，infinite，one－dimensional medium（such as an infinite tube）is given by

$$
L u=-\frac{d^{2} u}{d x^{2}}+q^{2} u=f(x), \quad x \in \mathbb{R}
$$

where f is the source density of the substance and $q>0$ is a positive constant．
i）Let $\xi \in \mathbb{R}$ be fixed．Use the Fourier transform to find a fundamental solution $E(x ; \xi)$ of L satisfying

$$
\begin{equation*}
L E(x ; \xi)=\delta(x-\xi), \quad \lim _{|x| \rightarrow \infty} E(x, \xi)=0 \tag{1}
\end{equation*}
$$

Is this a causal fundamental solution？Why or why not？
ii）Verify that the candidate function found satisfies（1）distributionally．

Exercise 6．3 Traveling Wave

The goal of this exercise is to obtain a fundamental solution of the stationary equation for a traveling wave with wavenumber k ，i．e．，a function $g(x, \xi)$ satisfying

$$
-\frac{d^{2} g}{d x^{2}}-k^{2} g=\delta(x-\xi), \quad 0<x, \xi<1
$$

with boundary conditions

$$
g(0, \xi)=g(1, \xi)=0
$$

i）Find a causal fundamental solution，i．e．，a function E satisfying

$$
-\frac{d^{2} E}{d x^{2}}-k^{2} E=\delta(x-\xi), \quad 0<x, \xi<1
$$

and $E(x)=0$ for $x<\xi$ ．
ii) Add a solution of the homogeneous equation $-\frac{d^{2} u}{d x^{2}}-k^{2} u=0$ to E to obtain a function that satisfies the boundary conditions.
iii) Use the Fourier transform to find a fundamental solution on \mathbb{R}, i.e., a function E satisfying

$$
-\frac{d^{2} E}{d x^{2}}-k^{2} E=\delta(x-\xi), \quad x, \xi \in \mathbb{R}
$$

iv) Add a solution of the homogeneous equation $-\frac{d^{2} u}{d x^{2}}-k^{2} u=0$ to E to obtain a function that satisfies the boundary conditions.

