Vv557 Methods of Applied Mathematics II

Green Functions and Boundary Value Problems

Assignment 5

Exercise 5.1

Calculate the Fourier transforms of the following elements in $\mathcal{S}'(\mathbb{R})$:

i)
$$\begin{cases} e^{-\varepsilon x} & x \ge 1, \\ 0 & x < 1, \end{cases} \quad \varepsilon > 0$$

ii) $\sin(3x-2)$,

- iii) $x^2 \cos(x)$,
- iv) xH(x-2),
- v) $x^2\delta(x-1)$.

Exercise 5.2

A distribution $T \in \mathcal{D}'$ is said to be even if $T\varphi = T\widetilde{\varphi}$ for all test functions φ , where $\widetilde{\varphi}(x) = \varphi(-x)$. The distribution is said to be odd if $T\varphi = -T\widetilde{\varphi}$.

Show that if $T \in \mathcal{S}'$ is even (odd), then the Fourier transform $\widehat{T} \in \mathcal{S}'$ is even (odd).

Exercise 5.3

Consider the wave equation problem for a function $u \colon \mathbb{R}^2 \to \mathbb{R}$,

$$u_{tt} - u_{xx} = 0,$$
 $u(x, 0) = f(x),$ $u_t(x, 0) = g(x).$

Take the Fourier transform of the equation with respect to the x-variable to obtain an ODE in the t-variable and solve the ODE to obtain

$$\widehat{u}(\xi,t) = \widehat{f}(\xi)\cos(\xi t) + \frac{\widehat{g}(\xi)}{\xi}\sin(\xi t).$$

Then calculate the inverse Fourier transform (in the distributional sense) to obtain a solution formula for u(x, t).