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Green Functions and o
Boundary Value Problems JOINT INSTITUTE

Assignment 2 (Selected Solutions) RABRERFRE

Exercise 2.1

Let & € (0,1) be fixed. The goal of this exercise is to show that the Green’s function g(x,&) (introduced and
defined in the lecture video) for the problem

—u" = f(x), 0<x<l, uw(0) =u(1) =0
satisfies
—g" =6(x &), 0<a<l, (1)

in the distributional sense. This will require the definition of distributions on the open set 2 = (0,1) C R.

Proceed as follows: Define first D(0,1) := {¢ € D(R): supp¢ C (0,1)} and then D’(0, 1) as the set of continuous
linear functionals on D(0,1). Regard g( -, &) as an element of D’(0, 1) and differentiate it as a distribution. Note
that the test functions will have compact support in the interval (0,1) C R.

Solution. Recall that the Green’s function g(z, &) is given by

_ (175)583 0§$<f,
5(m8) = {(1—x)£, <<l

For any ¢ € D(0,1), since suppy C (0,1), v must vanish on the boundary, i.e., ¢(0) = p(1) = 0. By the
definition of distributional derivative
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hence —g” = §(z — £) in the distributional sense.

Exercise 2.2

i) Verify that the Cauchy principal value P(1/z) defines a distribution, i.e., that it is a continuous linear
functional on D(R).

i) Verify that 2P(1/z) = 1 in the sense of distributions.

Exercise 2.3
Show that

where P(1/2%) € D'(R) is defined by



Solution. The principal value integral for 1/ acting on ¢ € D(R) is given by

P (1) @) =lim [ o) de
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By definition,

For any ¢ > 0,
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Exercise 2.4
Show that
1
/ 2 _
g € D'(R?), 9(z) = — 5 loglz|

satisfies —Ag = 6(z) in the distributional sense.

Solution. We calculate the derivative in the sense of distributions and introduce a paaremeter R > 0 to treat
the integral,

(AT)(0) = T,(8¢) = | a(0)Apla)da

= lim g(x)Ap(x) dx.
fm | o@e

By Green’s second identity,
de dg
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|z|=R on

Let us introduce polar coordinates and write g(r,8) for g(rcos(f),rsin(f)). The Laplace operator in polar
coordinates is given by

9?2 10 1 67

Apg =L 429, 1P
(,6) 87’2+r(‘9r+r2 062



which simply means that

A pyu(rcosd,rsinf) = Au(zy, z2) | (1,22)=(r cos 0,7 5in )

if u is a twice-differentiable function on R2. Since g(r,#) depends only on r and in fact §'(r) = —1/(277), we
have 19
A9 = ;5(@’(74)) =0

so the first integral on the right vanishes and
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