Vv557 Methods of Applied Mathematics II

Green Functions and Boundary Value Problems

Assignment 2 (Selected Solutions)

Exercise 2.1

Let $\xi \in (0,1)$ be fixed. The goal of this exercise is to show that the Green's function $g(x,\xi)$ (introduced and defined in the lecture video) for the problem

$$-u'' = f(x),$$
 $0 < x < 1,$ $u(0) = u(1) = 0$

satisfies

$$-g'' = \delta(x - \xi), \qquad 0 < x < 1,$$
 (1)

in the distributional sense. This will require the definition of distributions on the open set $\Omega = (0,1) \subset \mathbb{R}$.

Proceed as follows: Define first $\mathcal{D}(0,1) := \{ \varphi \in \mathcal{D}(\mathbb{R}) : \operatorname{supp} \varphi \subset (0,1) \}$ and then $\mathcal{D}'(0,1)$ as the set of continuous linear functionals on $\mathcal{D}(0,1)$. Regard $g(\cdot,\xi)$ as an element of $\mathcal{D}'(0,1)$ and differentiate it as a distribution. Note that the test functions will have compact support in the interval $(0,1) \subset \mathbb{R}$.

Solution. Recall that the Green's function $q(x,\xi)$ is given by

$$g(x,\xi) = \begin{cases} (1-\xi)x, & 0 \le x < \xi, \\ (1-x)\xi, & \xi \le x \le 1. \end{cases}$$

For any $\varphi \in \mathcal{D}(0,1)$, since $\operatorname{supp} \varphi \subset (0,1)$, φ must vanish on the boundary, i.e., $\varphi(0) = \varphi(1) = 0$. By the definition of distributional derivative

$$-T_g''\varphi = -T_g\varphi'' = -\int_0^1 g(x,\xi)\varphi''s(x)dx$$

$$= -\int_0^\xi (1-\xi)x\varphi''(x)dx - \int_\xi^1 (1-x)\xi\varphi''(x)dx$$

$$= -(1-\xi)\left[x\varphi'(x)\Big|_0^\xi - \int_0^\xi \varphi'(x)dx\right] - \xi\left[(1-x)\varphi'(x)\Big|_\xi^1 - \int_\xi^1 \varphi'(x)d(1-x)\right]$$

$$= -(1-\xi)[\xi\varphi'(\xi) - 0 - (\varphi(\xi) - \varphi(0))] - \xi[0 - (1-\xi)\varphi'(\xi) + (\varphi(1) - \varphi(\xi))]$$

$$= \varphi(\xi)$$

$$= T_{\delta\varepsilon}\varphi$$

hence $-g'' = \delta(x - \xi)$ in the distributional sense.

Exercise 2.2

- i) Verify that the Cauchy principal value $\mathcal{P}(1/x)$ defines a distribution, i.e., that it is a continuous linear functional on $\mathcal{D}(\mathbb{R})$.
- ii) Verify that $x\mathcal{P}(1/x) = 1$ in the sense of distributions.

Exercise 2.3

Show that

$$\frac{d}{dx}\mathcal{P}\left(\frac{1}{x}\right) = -\mathcal{P}\left(\frac{1}{x^2}\right),\,$$

where $\mathcal{P}(1/x^2) \in \mathcal{D}'(\mathbb{R})$ is defined by

$$\mathcal{P}\left(\frac{1}{x^2}\right)(\varphi) := \lim_{\varepsilon \searrow 0} \int_{|x| > \varepsilon} \frac{\varphi(x) - \varphi(0)}{x^2} \, dx.$$

Solution. The principal value integral for 1/x acting on $\varphi \in \mathcal{D}(\mathbb{R})$ is given by

$$\mathcal{P}\left(\frac{1}{x}\right)(\varphi) = \lim_{\varepsilon \searrow 0} \int_{|x| > \varepsilon} \frac{1}{x} \varphi(x) \, dx$$

By definition,

$$-\mathcal{P}\left(\frac{1}{x}\right)'(\varphi) = \mathcal{P}\left(\frac{1}{x}\right)(\varphi') = \lim_{\varepsilon \searrow 0} \int_{|x| > \varepsilon} \frac{1}{x} \varphi'(x) \, dx$$

For any $\varepsilon > 0$,

$$\begin{split} \int_{|x|>\varepsilon} \frac{1}{x} \varphi'(x) \, dx &= \int_{\varepsilon}^{\infty} \frac{1}{x} \varphi'(x) \, dx + \int_{-\infty}^{\varepsilon} \frac{1}{x} \varphi'(x) \, dx \\ &= \frac{\varphi(x)}{x} \Big|_{\varepsilon}^{\infty} + \int_{\varepsilon}^{\infty} \frac{1}{x^{2}} \varphi(x) \, dx + \frac{\varphi(x)}{x} \Big|_{-\infty}^{-\varepsilon} + \int_{-\infty}^{-\varepsilon} \frac{1}{x^{2}} \varphi(x) \, dx \\ &= -\frac{\varphi(\varepsilon)}{\varepsilon} - \frac{\varphi(-\varepsilon)}{\varepsilon} + \int_{|x|>\varepsilon} \frac{1}{x^{2}} \varphi(x) \, dx \\ &= -\frac{\varphi(\varepsilon) - \varphi(0)}{\varepsilon} + \frac{\varphi(-\varepsilon) - \varphi(0)}{-\varepsilon} - 2\frac{\varphi(0)}{\varepsilon} + \int_{|x|>\varepsilon} \frac{1}{x^{2}} \varphi(x) \, dx \\ &= -\frac{\varphi(\varepsilon) - \varphi(0)}{\varepsilon} + \frac{\varphi(-\varepsilon) - \varphi(0)}{-\varepsilon} + \int_{|x|>\varepsilon} \frac{1}{x^{2}} (\varphi(x) - \varphi(0)) \, dx \end{split}$$

Here we have used

$$\frac{2}{\varepsilon} = \int_{-\infty}^{-\varepsilon} \frac{1}{x^2} \, dx + \int_{\varepsilon}^{\infty} \frac{1}{x^2} \, dx = \int_{|x| > \varepsilon} \frac{1}{x^2} \, dx.$$

Note that

$$\lim_{\varepsilon \searrow 0} \frac{\varphi(\varepsilon) - \varphi(0)}{\varepsilon - 0} = \varphi'(0) = \lim_{\varepsilon \searrow 0} \frac{\varphi(-\varepsilon) - \varphi(0)}{0 - \varepsilon}$$

so

$$-\mathcal{P}\left(\frac{1}{x}\right)'(\varphi) = -\lim_{\varepsilon \searrow 0} \frac{\varphi(\varepsilon) - \varphi(0)}{\varepsilon} + \lim_{\varepsilon \searrow 0} \frac{\varphi(-\varepsilon) - \varphi(0)}{-\varepsilon} + \lim_{\varepsilon \searrow 0} \int_{|x| > \varepsilon} \frac{1}{x^2} (\varphi(x) - \varphi(0)) \, dx$$
$$= \lim_{\varepsilon \searrow 0} \int_{|x| > \varepsilon} \frac{1}{x^2} (\varphi(x) - \varphi(0)) \, dx = \mathcal{P}\left(\frac{1}{x^2}\right) (\varphi)$$

Exercise 2.4

Show that

$$g \in \mathcal{D}'(\mathbb{R}^2),$$
 $g(x) = -\frac{1}{2\pi} \log|x|$

satisfies $-\Delta g = \delta(x)$ in the distributional sense.

Solution. We calculate the derivative in the sense of distributions and introduce a paaremeter R > 0 to treat the integral,

$$(\Delta T_g)(\varphi) = T_g(\Delta \varphi) = \int_{\mathbb{R}^2} g(x) \Delta \varphi(x) \, dx$$
$$= \lim_{R \to 0} \int_{|x| > R} g(x) \Delta \varphi(x) \, dx.$$

By Green's second identity,

$$\int_{|x|>R} g(x)\Delta\varphi(x)\,dx = \int_{|x|>R} \Delta g(x)\varphi(x)\,dx + \int_{|x|=R} g(x)\frac{\partial\varphi}{\partial n}\,d\sigma - \int_{|x|=R} \varphi(x)\frac{\partial g}{\partial n}\,d\sigma$$

Let us introduce polar coordinates and write $\tilde{g}(r,\theta)$ for $g(r\cos(\theta),r\sin(\theta))$. The Laplace operator in polar coordinates is given by

$$\Delta_{(r,\theta)} = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2}$$

which simply means that

$$\Delta_{(r,\theta)} u(r\cos\theta, r\sin\theta) = \Delta u(x_1, x_2)\big|_{(x_1, x_2) = (r\cos\theta, r\sin\theta)}$$

if u is a twice-differentiable function on \mathbb{R}^2 . Since $\widetilde{g}(r,\theta)$ depends only on r and in fact $\widetilde{g}'(r) = -1/(2\pi r)$, we have

$$\Delta_{(r,\theta)}g = \frac{1}{r}\frac{\partial}{\partial r}(rg'(r)) = 0$$

so the first integral on the right vanishes and

$$\int_{|x| \ge R} g(x) \Delta \varphi(x) \, dx = \int_{|x| = R} g(x) \frac{\partial \varphi}{\partial n} \, d\sigma - \int_{|x| = R} \varphi(x) \frac{\partial g}{\partial n} \, d\sigma$$

Furthermore,

$$\begin{split} \left| \int_{|x|=R} g(x) \frac{\partial \varphi}{\partial n} \, d\sigma \right| &\leq 2\pi R \cdot \sup_{|x|=R} \left| g(x) \frac{\partial \varphi}{\partial n} \right| \\ &\leq R \cdot \ln(R) \sup_{|x|=R} \left| \frac{\partial \varphi}{\partial R} \right| \\ &\xrightarrow{R \to 0} 0. \end{split}$$

and

$$\begin{split} \int_{|x|=R} \varphi(x) \frac{\partial g}{\partial n} \, d\sigma &= \int_{|x|=R} \varphi(x) \left(-\frac{\partial}{\partial r} \left(-\frac{1}{2\pi} \ln(r) \right) \right) \, d\sigma \\ &= \frac{1}{2\pi R} \int_{|x|=R} \varphi(x) \, d\sigma \\ &\xrightarrow{R \to 0} \varphi(0). \end{split}$$

so

$$\lim_{R\to 0} \int_{|x|\geq R} g(x)(-\Delta)\varphi(x)\,dx = \varphi(0).$$