Vv557 Methods of Applied Mathematics II

Green Functions and Boundary Value Problems

Assignment 1

Recall that a sequence (f_n) of functions $f_n: I \to \mathbb{C}$, where $I \subset \mathbb{R}$, converges *pointwise* to a function $f: I \to \mathbb{C}$ if

$$\lim_{n \to \infty} |f_n(x) - f(x)| = 0 \quad \text{for all } x \in I.$$

The convergence is uniform if

$$\lim_{n \to \infty} \sup_{x \in I} |f_n(x) - f(x)| = 0$$

Exercise 1.1

Let $\xi \in (0,1) \subset \mathbb{R}$ be fixed. Solve the problem

$$-u'' = f_n(x;\xi), \qquad 0 < x < 1, \qquad \qquad u(0) = u(1) = 0 \tag{1}$$

for

$$f_n(x;\xi) = \begin{cases} n, & |x-\xi| < 1/2n \\ 0 & \text{otherwise,} \end{cases}$$

with 1/n smaller than $\min\{\xi, 1-\xi\}$.

i) For n as above, find the solution u_n of (1). You should obtain

$$u_n(x) = \begin{cases} (1-\xi) \cdot x & 0 \le x \le \xi - \frac{1}{2n}, \\ (1-\xi) \cdot x - \frac{n}{2} \left(x - \xi + 1/(2n) \right)^2 & \xi - \frac{1}{2n} < x < \xi + \frac{1}{2n}, \\ \xi \cdot (1-x) & \xi + \frac{1}{2n} \le x \le 1. \end{cases}$$

- ii) Verify that the sequence of solutions $u_n(x;\xi)$ converges pointwise on [0,1] as $n \to \infty$ to the Green function $g(x,\xi)$ derived in the lecture.
- iii) Is the convergence uniform on [0,1]? Prove your assertion!

Exercise 1.2

Which of the following are distributions? Justify your response!

- i) $T: \mathcal{D}(\mathbb{R}) \to \mathbb{C}, \varphi \mapsto \varphi(-10),$
- ii) $T: \mathcal{D}(\mathbb{R}) \to \mathbb{C}, \varphi \mapsto \varphi(0)^2,$
- iii) $T: \mathcal{D}(\mathbb{R}^n) \to \mathbb{C}^n, \varphi \mapsto \operatorname{grad} \varphi(0),$
- iv) $T: \mathcal{D}(\mathbb{R}) \to \mathbb{C}, \varphi \mapsto \varphi(0) + \varphi(1) + \varphi(2) + \varphi(3) + \dots,$
- v) $T: \mathcal{D}(\mathbb{R}^n) \to \mathbb{C}, \, \varphi \mapsto \int_{S^{n-1}} \varphi, \, \text{where } S^{n-1} = \{ x \in \mathbb{R}^n \colon |x| = 1 \}.$
- vi) $T_f: \mathcal{D}(\mathbb{R}) \to \mathbb{R}, \varphi \mapsto \int_{\mathbb{R}} f(x)\varphi(x) \, dx$, with
 - (a) f(x) = 1/x,
 - (b) $f(x) = 1/\sqrt{|x|},$
 - (c) $f(x) = 1/x^2$.

