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Assignment 6 (Selected Solutions)

Exercise 6.2 Equilibrium Diffusion

The equilibrium concentration u of a substance diffusing in a homogeneous, absorbing, infinite, one-dimensional
medium (such as an infinite tube) is given by

d*u

Lu=-2Y
Y dx?

+q2u=f(x), 1’€R7

where f is the source density of the substance and g > 0 is a positive constant.

i) Let £ € R be fixed. Use the Fourier transform to find a fundamental solution E(x;¢) of L satisfying

LE(x;&) = 6(z — &), lim E(z,£) =0. (1)

|z|—o00
Is this a causal fundamental solution? Why or why not?

ii) Verify that the candidate function found satisfies (1) distributionally.

Solution.

i) Since the differential equation has constant coefficients, we can assume & = 0. Taking the Fourier transform
of the equation

d?u
e +q*u = d(x)
we obtain 1
kl*a(k) + ¢alk) = —.
K7 (8) + (k) =
or ) )
wk) = —-——=.
(k) Vor k2 + ¢?
The inverse Fourier transform is
(2) = Lelal
2q
and the solution is )
Er: &) = —e—4lz—¢]
(x7 f) 2qe

The solution is not causal, since it does not vanish for z < &.



ii) We apply the left-hand side to a test function ¢ € D(R):

/:’O (—E(z;€)¢" (2) + *E(z;€)p(x)) do

1 o0
= 3 (—e*‘”"’”*f‘gp”(x) + q2efq|wf£\¢(m)) dr
1 oo
=5 (_e—(Ilw—f\@//(x) + q26—(1|95—§\<p(x)) dx
q.J -
[e's) 13 (%s)
= _i e—tz(w—O(p”(x) dr — i/ eq(w—f)(p'/(x) dx + i/ qu_qlw_glap(x) dr
2q Je 2q J_o 2q J_o
1 o 1 [ 1 1 [¢
:_?qe—q(z—ﬁ)wl(x)|£ _2/E e 1=/ () dx_?qeqw—&)w/(x)’ioo _,_5 [m 10 () da
=¢'(£)/(29) =—¢"(§)/(29)
+g/ e~ N8l p(z) da
L gl o 4% g |- S A
— _—eal® E)go(:c) 7,/ PG f)@(x)dz+,eq(z 5><p(z)| 7,/ ed(® 5)ga(a:)dx
2 ¢ 2/ 2 > 2/
=9(£)/2 =p(£)/2
+ %/ e~ e =8l (z) da

=p() = /Ré(x —&p(x) dx.

Exercise 6.3 Traveling Wave
The goal of this exercise is to obtain a fundamental solution of the stationary equation for a traveling wave with
wavenumber k, i.e., a function g(z,§) satisfying
d?g
——2 kg =6(x =), 0<z,&<1,
72 g=10(z—¢) 3

with boundary conditions

g(oaf) = 9(176) = 0.

i) Find a causal fundamental solution, i.e., a function F satisfying

d*F
——— —k’E =6z - ¢), 0<z,&<1,

and E(x) =0 for x < &.

ii) Add a solution of the homogeneous equation —32772‘ — k?u =0 to E to obtain a function that satisfies the
boundary conditions.

iii) Use the Fourier transform to find a fundamental solution on R, i.e., a function E satisfying

d’E
—@—kQE:(S(iL'—{)’ l’,fER.
iv) Add a solution of the homogeneous equation —% — k?u = 0 to E to obtain a function that satisfies the
boundary conditions.

Solution.

i) To find the a causal fundamental solution to the ODE,

’E
we impose the initial condition E(0;&) = E’(0;&) = 0, then via Laplace transform,

—§2E —K2E =88



hence
e—gs

82 k2
then by inverse Laplace transform, we have the causal fundamental solution as

E(s) =

B(w;€) = 3 H(z — &) sin(k(z ) 2)

ii) We know that the general solution to the ODE —u” — k?u = 0is u = ¢; cos kz + ¢ sin kx, with constants
c1,co € R. Suppose that
g(x, &) = E(x;€) + ¢1 coskx + co sinkax, (3)

then by imposing the boundary conditions, we have
9(0,§) =c1-14+c2-0=0,

g(1,¢) = f%sin(k(l — &)+ crcosk + cosink,

o 1—
thus we have ¢; = 0 and ¢y = %, hence the Green’s function is given by
1 y sin(k(1-¢)) .
g(x7€) - _kH(‘/E_f) bln(k(ﬂ;—f))“‘ kSink blnij
% sin kx, <&
B sin(k(1 - €))

— 2 sin(k(z — €)) + sinkz, @ >¢

ksink

that is, after simplification,

sin(k(1 — £)) sin(kz) .

g =4 Rk @)
sin(k(1 — x)) sin(k€)
ksink » T>8

iii) Given the ODE in Eq. (??), we apply Fourier transform and get an algebraic equation of E(w),

2p o €
wE—k"FE =
o
thus " "
- 1 e e " 1 1
E = = — 5
) Vorw?—k2  2k\2rm [w—k w—|—k} (5)

Recall from the lecture the Fourier transform of the Heaviside function,

F@) = =P (2) + /500

since sgnx = 2H (x) — 1, by linearity of Fourier transform, we have

(F sgn)(w) = 2{/2?7)(5;) ' \/5‘5(“)} TVl = iP(i)

Therefore by taking the inverse Fourier transform of (5), we have

B(;6) = ™9 sgn(e — &) + e O sgn(—(z - )
1.
= o sin(klz — €])

iv) Again assume that g(z,&) has the form in (3), and note that 0 < x,& < 1, the boundary conditions gives,

1
9(0,¢) = —%sin(k‘f) +e1-14c-0=0,

1
g9(1,¢) = ~% sin(k(1 —&)) + c1cosk + casink =0,



sin(k(1 —¢)) — sin(k€) cos k
ksink

1
thus ¢; = 3 sin(k€) and ¢o = , and thus

9(2,) = 5 sin(klz — )
sin(k(1 —¢)) — sin(k) cos k
ksink

+ % sin(k¢) cos(kx) + sin(kx),

which is the same as (4) after simplification.
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