Vv557 Methods of Applied Mathematics II

Green Functions and
Boundary Value Problems

Assignment 6 （Selected Solutions）

交大密西柤学院

Exercise 6．2 Equilibrium Diffusion

The equilibrium concentration u of a substance diffusing in a homogeneous，absorbing，infinite，one－dimensional medium（such as an infinite tube）is given by

$$
L u=-\frac{d^{2} u}{d x^{2}}+q^{2} u=f(x), \quad x \in \mathbb{R}
$$

where f is the source density of the substance and $q>0$ is a positive constant．
i）Let $\xi \in \mathbb{R}$ be fixed．Use the Fourier transform to find a fundamental solution $E(x ; \xi)$ of L satisfying

$$
\begin{equation*}
L E(x ; \xi)=\delta(x-\xi), \quad \quad \lim _{|x| \rightarrow \infty} E(x, \xi)=0 \tag{1}
\end{equation*}
$$

Is this a causal fundamental solution？Why or why not？
ii）Verify that the candidate function found satisfies（1）distributionally．

Solution．

i）Since the differential equation has constant coefficients，we can assume $\xi=0$ ．Taking the Fourier transform of the equation

$$
-\frac{d^{2} u}{d x^{2}}+q^{2} u=\delta(x)
$$

we obtain

$$
|k|^{2} \hat{u}(k)+q^{2} \hat{u}(k)=\frac{1}{\sqrt{2 \pi}} .
$$

or

$$
\hat{u}(k)=\frac{1}{\sqrt{2 \pi}} \frac{1}{k^{2}+q^{2}} .
$$

The inverse Fourier transform is

$$
u(x)=\frac{1}{2 q} e^{-q|x|}
$$

and the solution is

$$
E(x ; \xi)=\frac{1}{2 q} e^{-q|x-\xi|}
$$

The solution is not causal，since it does not vanish for $x<\xi$ ．
ii) We apply the left-hand side to a test function $\varphi \in \mathcal{D}(\mathbb{R})$:

$$
\begin{aligned}
& \int_{-\infty}^{\infty}\left(-E(x ; \xi) \varphi^{\prime \prime}(x)+q^{2} E(x ; \xi) \varphi(x)\right) d x \\
= & \frac{1}{2 q} \int_{-\infty}^{\infty}\left(-e^{-q|x-\xi|} \varphi^{\prime \prime}(x)+q^{2} e^{-q|x-\xi|} \varphi(x)\right) d x \\
= & \frac{1}{2 q} \int_{-\infty}^{\infty}\left(-e^{-q|x-\xi|} \varphi^{\prime \prime}(x)+q^{2} e^{-q|x-\xi|} \varphi(x)\right) d x \\
= & -\frac{1}{2 q} \int_{\xi}^{\infty} e^{-q(x-\xi)} \varphi^{\prime \prime}(x) d x-\frac{1}{2 q} \int_{-\infty}^{\xi} e^{q(x-\xi)} \varphi^{\prime \prime}(x) d x+\frac{1}{2 q} \int_{-\infty}^{\infty} q^{2} e^{-q|x-\xi|} \varphi(x) d x \\
= & \underbrace{-\left.\frac{1}{2 q} e^{-q(x-\xi)} \varphi^{\prime}(x)\right|_{\xi} ^{\infty}}_{=\varphi^{\prime}(\xi) /(2 q)}-\frac{1}{2} \int_{\xi}^{\infty} e^{-q(x-\xi)} \varphi^{\prime}(x) d x \underbrace{-\left.\frac{1}{2 q} e^{q(x-\xi)} \varphi^{\prime}(x)\right|_{-\infty} ^{\xi}}_{=-\varphi^{\prime}(\xi) /(2 q)}+\frac{1}{2} \int_{-\infty}^{\xi} e^{q(x-\xi)} \varphi^{\prime}(x) d x \\
& +\frac{q}{2} \int_{-\infty}^{\infty} e^{-q|x-\xi|} \varphi(x) d x \\
= & \underbrace{-\left.\frac{1}{2} e^{-q(x-\xi)} \varphi(x)\right|_{\xi} ^{\infty}}_{=\varphi(\xi) / 2}-\frac{q}{2} \int_{\xi}^{\infty} e^{-q(x-\xi)} \varphi(x) d x+\underbrace{\left.\frac{1}{2} e^{q(x-\xi)} \varphi(x)\right|_{-\infty} ^{\xi}}_{=\varphi(\xi) / 2}-\frac{q}{2} \int_{-\infty}^{\xi} e^{q(x-\xi)} \varphi(x) d x \\
& +\frac{q}{2} \int_{-\infty}^{\infty} e^{-q|x-\xi|} \varphi(x) d x \\
= & \varphi(\xi)=\int_{\mathbb{R}} \delta(x-\xi) \varphi(x) d x .
\end{aligned}
$$

Exercise 6.3 Traveling Wave

The goal of this exercise is to obtain a fundamental solution of the stationary equation for a traveling wave with wavenumber k, i.e., a function $g(x, \xi)$ satisfying

$$
-\frac{d^{2} g}{d x^{2}}-k^{2} g=\delta(x-\xi), \quad 0<x, \xi<1
$$

with boundary conditions

$$
g(0, \xi)=g(1, \xi)=0
$$

i) Find a causal fundamental solution, i.e., a function E satisfying

$$
-\frac{d^{2} E}{d x^{2}}-k^{2} E=\delta(x-\xi), \quad 0<x, \xi<1
$$

and $E(x)=0$ for $x<\xi$.
ii) Add a solution of the homogeneous equation $-\frac{d^{2} u}{d x^{2}}-k^{2} u=0$ to E to obtain a function that satisfies the boundary conditions.
iii) Use the Fourier transform to find a fundamental solution on \mathbb{R}, i.e., a function E satisfying

$$
-\frac{d^{2} E}{d x^{2}}-k^{2} E=\delta(x-\xi), \quad x, \xi \in \mathbb{R}
$$

iv) Add a solution of the homogeneous equation $-\frac{d^{2} u}{d x^{2}}-k^{2} u=0$ to E to obtain a function that satisfies the boundary conditions.

Solution.

i) To find the a causal fundamental solution to the ODE,

$$
-\frac{d^{2} E}{d x^{2}}-k^{2} E=\delta(x-\xi), \quad 0<x, \xi<1
$$

we impose the initial condition $E(0 ; \xi)=E^{\prime}(0 ; \xi)=0$, then via Laplace transform,

$$
-s^{2} \mathcal{E}-k^{2} \mathcal{E}=e^{-\xi s}
$$

hence

$$
\mathcal{E}(s)=-\frac{e^{-\xi s}}{s^{2}+k^{2}}
$$

then by inverse Laplace transform, we have the causal fundamental solution as

$$
\begin{equation*}
E(x ; \xi)=-\frac{1}{k} H(x-\xi) \sin (k(x-\xi)) \tag{2}
\end{equation*}
$$

ii) We know that the general solution to the $\mathrm{ODE}-u^{\prime \prime}-k^{2} u=0$ is $u=c_{1} \cos k x+c_{2} \sin k x$, with constants $c_{1}, c_{2} \in \mathbb{R}$. Suppose that

$$
\begin{equation*}
g(x, \xi)=E(x ; \xi)+c_{1} \cos k x+c_{2} \sin k x, \tag{3}
\end{equation*}
$$

then by imposing the boundary conditions, we have

$$
\begin{gathered}
g(0, \xi)=c_{1} \cdot 1+c_{2} \cdot 0=0 \\
g(1, \xi)=-\frac{1}{k} \sin (k(1-\xi))+c_{1} \cos k+c_{2} \sin k
\end{gathered}
$$

thus we have $c_{1}=0$ and $c_{2}=\frac{\sin (k(1-\xi))}{k \sin k}$, hence the Green's function is given by

$$
\begin{aligned}
g(x, \xi) & =-\frac{1}{k} H(x-\xi) \sin (k(x-\xi))+\frac{\sin (k(1-\xi))}{k \sin k} \sin k x \\
& = \begin{cases}\frac{\sin (k(1-\xi))}{k \sin k} \sin k x, & x<\xi \\
-\frac{1}{k} \sin (k(x-\xi))+\frac{\sin (k(1-\xi))}{k \sin k} \sin k x, & x>\xi\end{cases}
\end{aligned}
$$

that is, after simplification,

$$
g(x, \xi)= \begin{cases}\frac{\sin (k(1-\xi)) \sin (k x)}{k \sin k}, & x<\xi \tag{4}\\ \frac{\sin (k(1-x)) \sin (k \xi)}{k \sin k}, & x>\xi\end{cases}
$$

iii) Given the ODE in Eq. (??), we apply Fourier transform and get an algebraic equation of $\hat{E}(\omega)$,

$$
\omega^{2} \hat{E}-k^{2} \hat{E}=\frac{e^{-i \xi \omega}}{\sqrt{2 \pi}}
$$

thus

$$
\begin{equation*}
\hat{E}(\omega)=\frac{1}{\sqrt{2 \pi}} \frac{e^{-i \xi \omega}}{\omega^{2}-k^{2}}=\frac{e^{-i \xi \omega}}{2 k \sqrt{2 \pi}}\left[\frac{1}{\omega-k}-\frac{1}{\omega+k}\right] \tag{5}
\end{equation*}
$$

Recall from the lecture the Fourier transform of the Heaviside function,

$$
(\mathcal{F} H)(\omega)=\frac{i}{\sqrt{2 \pi}} \mathcal{P}\left(\frac{1}{\omega}\right)+\sqrt{\frac{\pi}{2}} \delta(\omega),
$$

since $\operatorname{sgn} x=2 H(x)-1$, by linearity of Fourier transform, we have

$$
(\mathcal{F} \operatorname{sgn})(\omega)=2\left[\frac{i}{\sqrt{2 \pi}} \mathcal{P}\left(\frac{1}{\omega}\right)+\sqrt{\frac{\pi}{2}} \delta(\omega)\right]-\sqrt{2 \pi} \delta(\omega)=i \sqrt{\frac{2}{\pi}} \mathcal{P}\left(\frac{1}{\omega}\right)
$$

Therefore by taking the inverse Fourier transform of (5), we have

$$
\begin{aligned}
E(x ; \xi) & =\frac{i}{4 k} e^{i k(x-\xi)} \operatorname{sgn}(x-\xi)+\frac{i}{4 k} e^{-i k(x-\xi)} \operatorname{sgn}(-(x-\xi)) \\
& =-\frac{1}{2 k} \sin (k|x-\xi|)
\end{aligned}
$$

iv) Again assume that $g(x, \xi)$ has the form in (3), and note that $0<x, \xi<1$, the boundary conditions gives,

$$
\begin{gathered}
g(0, \xi)=-\frac{1}{2 k} \sin (k \xi)+c_{1} \cdot 1+c_{2} \cdot 0=0, \\
g(1, \xi)=-\frac{1}{2 k} \sin (k(1-\xi))+c_{1} \cos k+c_{2} \sin k=0,
\end{gathered}
$$

thus $c_{1}=\frac{1}{2} \sin (k \xi)$ and $c_{2}=\frac{\sin (k(1-\xi))-\sin (k \xi) \cos k}{k \sin k}$, and thus

$$
\begin{aligned}
& g(x, \xi)=-\frac{1}{2 k} \sin (k|x-\xi|) \\
& \quad+\left[\frac{1}{2} \sin (k \xi) \cos (k x)+\frac{\sin (k(1-\xi))-\sin (k \xi) \cos k}{k \sin k}\right] \sin (k x)
\end{aligned}
$$

which is the same as (4) after simplification.

